Rhinitis 2020: A Practice Parameter Update

Mark S. Dykewicz, MD, Dana V. Wallace, MD, David J. Amrol, MD, Fuad M. Baroody, MD, Jonathan A. Bernstein, MD, Timothy J. Craig, DO, Chitra Dinakar, MD, Anne K. Ellis, MD, Ira Finegold, MD, David BK. Golden, MD, Matthew J. Greenhawt, MD, John B. Hagan, MD, Caroline C. Horner, MD, David A. Khan, MD, David M. Lang, MD, Desiree ES. Larenas-Linnemann, MD, Jay A. Lieberman, MD, Eli O. Meltzer, MD, John J. Oppenheimer, MD, Matthew A. Rank, MD, Marcus S. Shaker, MD, Jeffrey L. Shaw, MD, Gary C. Steven, MD, David R. Stukus, MD, Julie Wang, MD

PII: S0091-6749(20)31023-X
DOI: https://doi.org/10.1016/j.jaci.2020.07.007
Reference: YMAI 14665
To appear in: Journal of Allergy and Clinical Immunology

Received Date: 6 February 2020
Revised Date: 22 June 2020
Accepted Date: 1 July 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.
Rhinitis 2020: A Practice Parameter Update

Authors: Mark S. Dykewicz, MD, Dana V. Wallace, MD, David J. Amrol, MD, Fuad M. Baroody, MD, Jonathan A. Bernstein, MD, Timothy J. Craig, DO, Chitra Dinakar, MD, Anne K. Ellis, MD, Ira Finegold, MD, David BK Golden, MD, Matthew J. Greenhawt, MD, John B. Hagan, MD, Caroline C. Horner, MD, David A. Khan, MD, David M. Lang, MD, Desiree ES Larenas-Linnemann, MD, Jay A. Lieberman, MD, Eli O. Meltzer, MD, John J. Oppenheimer, MD, Matthew A. Rank, MD, Marcus S. Shaker, MD, Jeffrey L. Shaw, MD, Gary C. Steven, MD, David R. Stukus, MD, Julie Wang, MD

Chief Editor(s): Mark S. Dykewicz, MD and Dana V. Wallace, MD

Workgroup Contributors: Mark S. Dykewicz, MD, Dana V. Wallace, MD, David J. Amrol, MD, Fuad M. Baroody, MD, Jonathan A. Bernstein, MD, Timothy J. Craig, DO, Ira Finegold, MD, John B. Hagan, MD, Desiree ES Larenas-Linnemann, MD, Eli O. Meltzer, MD, Jeffrey L. Shaw, MD, Gary C. Steven, MD

1Section of Allergy & Immunology, Saint Louis University School of Medicine, St. Louis, MO, 2Nova Southeastern Allopathic Medical School, Fort Lauderdale, FL, 3University of South Carolina School of Medicine, Columbia, SC, 4Otolaryngology-HNS, University of Chicago, Chicago, IL, 5Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati College of Medicine, Cincinnati, OH, 6Penn State University Department of Medicine and Pediatrics, Hershey, PA, 7Division of Pulmonary and Critical Care Medicine Stanford University School of Medicine, Stanford, CA, 8Division of Allergy & Immunology, Department of Medicine, Queen’s University, Kingston, ON Canada, 9Division of Allergy and Immunology, Mount Sinai West, New York, NY, 10Division of Allergy and Clinical Immunology, John Hopkins University School of Medicine, Baltimore, MD, 11Food Challenge and Research Unit Section of Allergy and Immunology, Children’s Hospital Colorado University of Colorado School of Medicine, Aurora, CO, 12Mayo Clinic, Rochester, MN, 13Department of Pediatrics, Division of Allergy Pulmonary Medicine, Washington University School of Medicine, St. Louis, MO, 14Department of Internal Medicine, Division of Allergy and Immunology, UT Southwestern Medical Center, Dallas, TX, 15Department of Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, OH, 16Head Center of Excellence in Asthma and Allergy at Hospital Medica Sur, Mexico City, Mexico, 17Division of Allergy and Immunology, The University of Tennessee Health Science Center, Memphis, TN, 18Department of Pediatrics, Allergy/Immunology, University of California, San Diego and Allergy and Asthma Medical Group & Research Center, San Diego, CA, 19Department of Internal Medicine, Pulmonary and Allergy, UMDNJ-Rutgers New Jersey Medical School and Pulmonary and Allergy Associates, Morristown, NJ, 20Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, 21Dartmouth-Hitchcock Medical Center Department of Pediatrics Lebanon, NH, 22Prevea Health, Green Bay, WI, 23Allergy, Asthma & Sinus Center, Greenfield, WI, 24Division of Allergy and Immunology, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, Ohio, 25Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY.

Reprints: Joint Task Force on Practice Parameters (JTFPP) liaison: Rebecca Brandt (American Academy of Allergy, Asthma, and Immunology, 555 E. Wells Street, Suite 1100, Milwaukee, WI 53202, rbrandt@aaaai.org); JTFPP.allergy@gmail.com

Disclosures: The JTFPP members and work group members’ conflict of interest disclosure forms can be found at www.allergyparameters.org. Mark Dykewicz has served as a committee member for the AAAAI Rhinitis, Rhinosinusitis, and Ocular Allergy Interest Section and is also a member of the ACAAI Rhinitis/Sinusitis Committee. Dana Wallace has received financial support from Mylan, Kaleo, Optinose, ALK, Bryan, and Sanofi. David Amrol has received financial support from CSL Behring; and is Board Member for the Southeastern Allergy, Asthma, and Immunology Society. Fuad Baroody is a member of the American Rhinologic Society and a member of the American Academy of Otolaryngology-Head and Neck Surgery. Jonathan Bernstein has received financial support from CSL Behring; and is Board Member for the Southeastern Allergy, Asthma, and Immunology Society.
from Sanofi Regeneron, AstraZeneca, Merck, Optinose, Takeda, CSL Behring, Biocryst, Pharming, the National
Institutes of Health (NIH), Taylor Francis, INEOS; is Editor in Chief of the Journal of Asthma, INEOS Medical
Immunosurveillance Director, Vice Chair and Lectureship Chair of the American Academy of Allergy, Asthma, and
Immunology (AAAAI) Foundation, Chairman of AFI, American College of Asthma, Allergy, and Immunology (ACAAI)
Asthma Chair, Scientific Chair, and Young Investigator Award Chair, and serves of the Board of Directors and
Scientific Committee of Interasma. Tim Craig has received financial support from CSL Behring, Dyax, Takeda,
BioCryst, Pharming, Grifols, GSK, Regeneron, and Novartis/Genentech; is on the Medical Advisory Board for HAE-A
of America, serves of the Board of Directors for the American Academy of Allergy, Asthma, and Immunology
(AAAAAI), and is a member of the ALA Mid-Atlantic Board. Chitra Dinakar has received financial support from
Propeller Health, ACAAI (stipend for Editorial Board of AllergyWatch), and the American Association of Allergists of
Indian Origin; serves on the Board of Directors of the AAAAI and on the Medical Advisory Board of Food Equity
Initiative; is Assistant Editor of AllergyWatch. Anne Ellis has received financial support from ALK Abello, Astra
Zeneka, Green Cross, Merck, Novartis, Nuvo, Pedipharma, Pfizer, Kaleo, Novartis, Sanofi, Regeneron; serves on
the Board of Directors of the Canadian Allergy Society of Allergy and Clinical Immunology. Ira Finegold has no
competing relationships, organizational interests, or conflicts to disclose. David Golden has received financial
support from Aquestive, Sandoz, ALK-Abello, Sandoz, Genentech, Stallergenes-Greer, and UpToDate. Matthew
Greenhawt has received financial support from Aquestive, Merck, Allergenics, Allergy Therapeutics, Sanofi
Genzyme, Genentech, Aravax, Prota, Before Brands, the Institute for Clinical and Economic Review, ACAAI, DBV,
Intrommune, and is supported by the Agency of Healthcare Research and Quality; has served on the advisory
board of International PFIES Association, the Asthma and Allergy Foundation of America, and the National Peanut
Board; is Associate Editor of the Annals of Allergy, Asthma, and Immunology. John Hagan is member of the
Quality, Adherence and Outcomes Committee at the American Academy of Allergy, Asthma and Immunology
(AAAAAI) and is Chairman of the Rhinitis/Sinusitis/Ocular Committee at the American College of Allergy, Asthma,
and Immunology. Caroline Horner has served as committee chair for the AAAAI Asthma Diagnosis and Treatment
Interest Section, Interest Section Coordinating Committee, and In-Training Exam Coordinating Committee. David
Khan has received financial support from UpToDate and Aimmune; serves on the Board of Directors of the AAAAI,
ACAAI Chair of Literature Review, Co-Chair of Conjoint Board Review, Texas Allergy, Asthma, and Immunology
Society Chair of Meetings Committee, and is Associate Editor of the Journal of Allergy and Clinical Immunology In
Practice. David Lang is on the Editorial Board for Allergy and Asthma Proceedings, Topic Editor for DynaMed,
Associate Editor for J Asthma, and Delegate to NQF representing the American Academy of Allergy, Asthma, and
Immunology (AAAAI). Desiree Larenas-Linnemann has received financial support from AstraZeneca, Mylan, GSK,
Sanofi, Novartis, DBV technologies, SUMA/Circassia, and Thermofisher; is a Board member of the Colegio
Mexicano de Immunologia Clinica y Alergia, a member of COMPEDIA, and an Immunotherapy CIE Member at the
American Academy of Asthma, Asthma, and Immunology, a member of the IT interest group and task force at
EAACI, and an International cie chair for the Latam portfolio at the American College of Allergy, Asthma, and
Immunology (ACAAI). Jay Lieberman has received financial support from the ACAAI, Aquestive, Aimmune, DBV,
Biotest Pharma, and Regeneron; is Associate Editor of the Annals of Allergy, Asthma, and Immunology, Vice Chair
for the ACAAI Food Allergy Committee, and Medical Director for Food Allergy Alliance of the MidSouth. Eli Meltzer
has received support from Boehringer-Ingelheim, GlaxoSmithKline, Glenmark, GossamerBio, Merck, Mylan,
Optinose, ALK, AstraZeneca, Regeneron/Sanofi. John Oppenheimer has received financial support from DBV,
TEVA, GlaxoSmithKline adjudication/data safety monitoring board, AstraZeneca, Novartis, and Sanofi; is Associate
Editor of the Annals of Allergy, Asthma, and Immunology and AllergyWatch, an American Board of Internal
Medicine (ABIM) Council Member and American Board of Allergy and Immunology Liaison to the ABIM, UpToDate
Reviewer, ACCP Cough Guideline Committee Member, and WebMD Editor. Matthew Rank has received financial
support from the ACAAI, NIH, and Levin Family Foundation; has served as Chair of the AAAAI HEDQ Interest
Section, and is Research Director of the Phoenix Children’s Hospital Breathmobile. Marcus Shaker has received
financial support from the Eastern Asthma Conference and has a family member who is CEO of Altrix Medical.
Jeffrey Shaw is a committee member for the Rhinitis, Sinusitis, and Ocular Committee American College of Allergy,
Asthma, and Immunology (ACAAI). Gary Steven has received financial support from 3M, AZ, Attenua, Chiesi, Cipla,
Glenmark5, GSK, Lupin, Menlo, Merck, Novartis, Pearl, Sanofi, Teva, Stallergenes, NeRRe, Watson, Westward,
Aimmune, ALK, Regeneron, AAN, Boehringer, and Optinose. David Stukus has received financial support from
Aimmune, Before Brands, Abbott Nutrition, the American Academy of Pediatrics (AAP), ACAAI; has served as
Committee Chair for the AAAAI and ACAAI. Julie Wang has received financial support from ALK Abello, Regeneron,
Resolving conflict of interest:
The Joint Task Force on Practice Parameters (JTFPP) is committed to ensuring that all guidelines are based on the best scientific evidence at the time of publication, and that such evidence is free of commercial bias to the greatest extent possible. Before confirming the selection of the workgroup chairperson and members, the JTFPP discusses and resolves all relevant potential conflicts of interest (COI) of each workgroup member. The JTFPP recognizes that experts in a field are likely to have interests that could come into conflict with the development of a completely unbiased and objective guideline. Therefore, a process has been developed to acknowledge potential COI when making specific recommendations. To preserve the greatest transparency regarding potential COI, all members of the JTFPP and workgroup complete a COI form prior to the development of each document and again prior to the guideline submission for publication.

During the review process there are additional measures to avoid bias. At the workgroup level, all the recommendations and discussion sections are reviewed by all workgroup members to ensure that content is appropriate and without apparent bias. If any recommendation or section is deemed to have apparent bias, it is appropriately revised, without the section author’s involvement, in an attempt to remove potential bias. In addition, the entire document is also reviewed by the JTFPP and any apparent bias is acknowledged and removed at that level. For each and every recommendation, a vote is required by the workgroup and JTFPP, and any member with any perceived COI is recused from that vote (and so explained in the document). Any dissenting votes that cannot be resolved are described and explained in the document.

In a final stage of review, the practice parameter is sent to invited expert reviewers for review, selected by the American Academy of Allergy, Asthma, and Immunology (AAAAI) and the American College of Allergy, Asthma, and Immunology (ACAAI). The document is also posted on the AAAAI and ACAAI websites for general membership and the public-at-large to review and offer comment. All reviewers must provide statements of potential COI. Although the JTFPP has the final responsibility for the content of the documents submitted for publication, each reviewer’s comments will be discussed and reviewers will receive written responses to comments when appropriate.

The JTFPP members and workgroup members’ conflict of interest disclosure forms can be found at www.allergyparameters.org.

Disclaimer: The American Academy of Allergy, Asthma, and Immunology and the American College of Allergy, Asthma, and Immunology have jointly accepted responsibility for developing the Rhinitis 2020: A Practice Parameter Update. The medical environment is rapidly changing, and not all recommendations will be appropriate or applicable to all patients and may change over time. Because this document incorporates the efforts of many participants, no single individual, including members serving on the JTFPP, is authorized to provide an official AAAAI or ACAAI interpretation of this guideline. Any request for information or interpretation of this practice parameter by the AAAAI or ACAAI should be directed to the executive offices of the AAAAI and the ACAAI. Practice parameters and guidelines are not designed for use by the pharmaceutical industry in drug development or promotion. The JTFPP understands that the cost of diagnostic tests and therapeutic interventions is an important concern that may appropriately influence the evaluation and treatment selected for a given patient. The JTFPP recognizes that the emphasis of our primary recommendations regarding a medication may vary, for example, depending on third-party payer issues and product patent expiration dates. However, because a given test or a therapeutic intervention’s cost is so widely variable, and there is a relative paucity of pharmacoeconomic data, the JTFPP is not always able to consider cost when formulating recommendations. In extraordinary circumstances, when the cost benefit of an intervention is prohibitive as supported by pharmacoeconomic data, commentary may be provided.
Capsule Summary: This comprehensive practice parameter for allergic and nonallergic rhinitis provides updated guidance on diagnosis, assessment, selection of monotherapy and combination pharmacotherapy options, and allergen immunotherapy. Food allergy testing and parenteral corticosteroids are not recommended.

Contributors: The JTFPP has made a concerted effort to acknowledge all contributors to this parameter. If any contributors have been excluded inadvertently, the JTFPP will ensure that appropriate recognition is provided.

Key Words: Allergic rhinitis; Non-allergic rhinitis; Vasomotor rhinitis; Local allergic rhinitis; Food allergy; Antihistamines; Corticosteroids; Ipratropium; Allergen immunotherapy; Decongestants

Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAI</td>
<td>American Academy of Allergy, Asthma, and Immunology</td>
</tr>
<tr>
<td>ACAAI</td>
<td>American College of Allergy, Asthma, and Immunology</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-converting enzyme</td>
</tr>
<tr>
<td>AIT</td>
<td>Allergen immunotherapy</td>
</tr>
<tr>
<td>AR</td>
<td>Allergic rhinitis</td>
</tr>
<tr>
<td>ARCT</td>
<td>Allergic rhinitis control test</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BENARS</td>
<td>Blood eosinophilic non-allergic rhinitis</td>
</tr>
<tr>
<td>CBS</td>
<td>Consensus based statements</td>
</tr>
<tr>
<td>CHM</td>
<td>Chinese herbal medicine</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CRSSNP</td>
<td>Chronic rhinosinusitis without nasal polyps</td>
</tr>
<tr>
<td>CRSwNP</td>
<td>Chronic rhinosinusitis with nasal polyps</td>
</tr>
<tr>
<td>CysLTs</td>
<td>Cysteiny] leukotrienes</td>
</tr>
<tr>
<td>DBPC</td>
<td>Double blind placebo controlled</td>
</tr>
<tr>
<td>DP</td>
<td>Dermatophagoides pteronyssinus</td>
</tr>
<tr>
<td>DSCG</td>
<td>Disodium cromoglycate</td>
</tr>
<tr>
<td>FDA</td>
<td>Federal Drug Administration</td>
</tr>
<tr>
<td>GINA</td>
<td>Global Initiative for Asthma</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations, Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic–pituitary–adrenal</td>
</tr>
<tr>
<td>ICRs</td>
<td>Individual Case Safety Reports</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>IMCS</td>
<td>Immotile-ciliary syndrome</td>
</tr>
<tr>
<td>INAH</td>
<td>Intranasal antihistamine</td>
</tr>
<tr>
<td>INS</td>
<td>Intranasal corticosteroids</td>
</tr>
<tr>
<td>IR</td>
<td>Irritant rhinitis</td>
</tr>
<tr>
<td>JTFPP</td>
<td>Joint Task Force on Practice Parameters</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LAR</td>
<td>Local allergic rhinitis</td>
</tr>
<tr>
<td>LTRA(s)</td>
<td>Leukotriene receptor antagonist(s)</td>
</tr>
<tr>
<td>MASK</td>
<td>Mobile Airways Sentinel network</td>
</tr>
<tr>
<td>NAPT</td>
<td>Nasal allergen provocation test</td>
</tr>
<tr>
<td>NAR</td>
<td>Non-allergic rhinitis</td>
</tr>
<tr>
<td>NARES</td>
<td>Non-allergic rhinitis with eosinophilia syndrome</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>NSD</td>
<td>Nasal septal deviation</td>
</tr>
<tr>
<td>OAS</td>
<td>Oral allergy syndrome</td>
</tr>
</tbody>
</table>
PA | Pyrrolizidine alkaloids
PAR | Perennial allergic rhinitis
PCD | Primary ciliary dyskinesia
PGA | Physician’s global assessment
PSE | Pseudoephedrine
QALY | Quality-adjusted life-year
QOL | Quality of life
RCAT | Rhinitis control assessment test
RCT | Randomized controlled trial
REM | Rapid eye movement
RQLQ | Rhinitis Quality of Life Questionnaire
RUDS | Reactive upper airways dysfunction syndrome
SAR | Seasonal allergic rhinitis
SCIT | Subcutaneous allergy immunotherapy
sIgE | Specific IgE
SLIT | Sublingual immunotherapy
TNSS | Total nasal symptom score
TRPV1 | Transient receptor potential vanilloid 1
TSDDs | Total standardized daily doses
TVRSS | Total vasomotor rhinitis symptom score
VAS | Visual analog scale
VMR | Vasomotor rhinitis
WER | Work exacerbated rhinitis

Introduction
The diagnosis of rhinitis is suggested by the presence of 1 or more of the following symptoms: nasal congestion, rhinorrhea (anterior and posterior), sneezing, and itching. Rhinitis can be classified by pathogenic mechanisms, as allergic or non-allergic and differentiated from conditions that have overlapping symptoms of rhinitis.

Rhinitis Phenotypes
Although the term rhinitis connotes inflammation, and allergic rhinitis (AR) and some types of non-allergic rhinitis (NAR) are associated with inflammation, (e.g., non-allergic rhinitis with eosinophilia syndrome (NARES), infectious rhinitis) some forms of NAR such as vasomotor rhinitis or atrophic rhinitis may not be associated with inflammation of the nasal mucosa.
Rhinitis frequently is accompanied by symptoms involving the eyes, ears, and throat. Conditions that have overlapping symptoms with rhinitis include rhinosinusitis with and without nasal
poles, cerebrospinal fluid rhinorrhea, ciliary dyskinesia syndrome, and structural/mechanical factors, such as congenital anomalies, deviated septum and pharyngonasal reflux. Recognition of whether a patient has AR or NAR, or another mimicking condition is important because management will differ.

AR affects up to 60 million people in the U.S. annually, can have a major impact on quality of life, and poses a substantial economic burden on society. It also is often associated with and can potentially impact asthma, allergic conjunctivitis, rhinosinusitis, and sleep disturbances.

Prevalence

Self-reported rates of AR are 10% to 30% of adults and as many as 40% of children in the United States. In recent surveys that required a physician confirmed diagnosis of AR the prevalence rates were 14% of US adults and 13% of US children. Canadian data supports an even higher prevalence of up to 20% of the population having physician diagnosed AR. Chronic NAR has been estimated to affect 17-52% of adults while up to 34% of rhinitis patients in the US may have a combination of AR and NAR, often referred to as “mixed rhinitis”.

Quality of life in rhinitis

Issues of quality of life associated with rhinitis include disturbed sleep, daytime somnolence and fatigue, irritability, depression, impairment of physical and social functioning, and attention, learning, and memory deficits. Thirty-five% -50% of adults reported that nasal allergies have at least a moderate effect on their daily life. Sleep disturbances associated with rhinitis include difficulty falling asleep, staying asleep, and awakening refreshed. Nearly one in four of adult US respondents report they are unable to sleep or are awakened most days or every day and up to 45% of children experience sleep disruption because of nasal allergy symptoms. Most studies indicate associations between nasal allergies and anxiety/mood syndromes. Limited available data report that health-related quality of life is reduced in patients with NAR, with greatest reductions in patients with NARES. A decreased sense of smell, present in both AR and NAR, can lead to a significant decrease in quality of life, including disturbing a patient’s ability to appreciate flavors, losing the pleasures of eating, and increasing health risks such as not appreciating spoiled food or leaking gas and adding larger quantities of sugar and salt to highlight flavors, thus worsening general health.

Economic and societal burden of rhinitis

While the total direct medical cost of rhinitis are tremendous, rhinitis is also a significant cause of lost work and school days, and decreased work productivity/presenteeism (work interference) and school performance. Up to 10% of workers reported absenteeism because of their nasal allergies, and up to 25% reported presenteeism, with an estimated 23-33% decrease in productivity on days when allergies were at their worst compared with days when the respondent experienced no symptoms. Increased symptom severity, decreased sleep quality and quantity, adverse effects on mental function, and treatment with soporific antihistamines negatively impact work.
productivity. Appropriate therapy can substantially reduce both societal and employer costs. Lack of treatment, under treatment, or nonadherence to treatment have been shown to increase direct and indirect costs. AR can, by itself, introduce significant inattention, impairment of cognition and decreased daytime school performance. AR, notably present in about 75-80% of all patients with asthma and in nearly 100% with allergic asthma, is associated with increased asthma-related hospitalizations and higher total annual medical costs.

Classification of Allergic Rhinitis: Severity, frequency, and environmental exposure

Assessment of rhinitis by severity, frequency, and exposure can assist the clinician in developing the most appropriate treatment strategies for an individual patient. (See Figures 2 and 3). *Mild rhinitis* severity is present when symptoms are not interfering with quality of life such as impairment of daily activities, work or school performance, leisure activities and sleep. *Moderate/severe rhinitis* is present when symptoms are troublesome or there is negative impact on any of these quality of life parameters. Other groups have proposed a division into mild, moderate and severe, but as this division does not clearly translate into a change in therapy, the most accepted division is still the dual one, which is also used in the majority of clinical trials.

Symptom frequency has been divided by some into *intermittent* (< 4 days/week or < 4 consecutive weeks/year) and *persistent* (≥4 days/week and ≥ 4 consecutive weeks/year). This strict definition has some limitations, e.g. a patient who has symptoms three days/week year-round would be classified as “intermittent” although they might more closely resemble a “persistent” patient.

The preceding definitions of severity and frequency may be applied to AR, NAR or mixed rhinitis (when both allergic and non-allergic components contribute to rhinitis symptoms). AR may also be classified by the temporal pattern of environmental exposure to a triggering allergen: *seasonal* (ICD-10 J30.2, e.g. from pollens, J30.1), *perennial* (year round, e.g. dust mites, J30.89 “other allergic rhinitis” and J30.9 “allergic rhinitis, unspecified”), or from *episodic allergen exposures* not normally encountered in the patient’s environment, such as visiting a home with pets. AR from animals (J30.81) therefore may be perennial with ongoing exposure, or occur only with episodic exposure.

In the U.S., AR has traditionally been viewed as either seasonal (SAR) or perennial (PAR) and it is this classification system that the Federal Drug Administration uses when approving new medications for AR. The reality is that a patient may have both SAR and PAR, SAR or PAR with non-allergic rhinitis (ICD10: J30 Vasomotor and allergic rhinitis), intermittent symptoms with perennial AR, or persistent symptoms with seasonal AR. It is also recognized that the distinction between SAR and PAR has limitations; in different climatic regions, the same aeroallergen can be either seasonal or perennial. Nonetheless, the recognition that an individual has SAR and is allergic to particular pollen allergens of known seasonality in a region may help guide administration of medications concurrent with (or in anticipation of) that defined seasonal exposure. That said, one must be mindful
that nasal inflammation and thereby need for treatment may persist for weeks after a
pollen season is over. The majority of patients are polysensitized to both pollens and
perennial allergens. In a population of 6000 AR patients, it was shown that 55% of patients
with seasonal symptoms and 45% of those with perennial symptoms had intermittent AR;
thus, the SAR-PAR classification is independent from the intermittent-persistent one.
Since then, numerous studies have duplicated these findings in other regions.

Local Allergic Rhinitis

In Local Allergic Rhinitis (LAR), also referred to as entopy, there is: a) a clinical history of
perennial and/or seasonal symptoms following allergen exposure, with b) negative skin prick
tests (and intradermal tests, when performed) and absence of serum specific IgE [sIgE]
antibodies but c) a positive nasal allergen provocation test (NAPT) to aeroallergens.

While one major study center in Europe has contributed the bulk of the research on LAR as
discussed above, additional small studies from Australia, Sweden, Egypt, and China have supported their findings. There have been limited US studies, not all confirming these
findings.

A dual (immediate and late) response to NAPT had been noted in 37-70% of LAR. Although
it would be expected that local sIgE would be detected in all patients with NAPT challenge-
diagnosed LAR, some studies of LAR from pollens detect local sIgE in as few as 30%. When
present in patients with SAR, an increase in nasal sIgE is noted both during NAPT challenge and
during pollen season. Likewise, in one dust mite LAR study, of patients who had a positive
NAPT-dust mite challenge, only 22% had nasal sIgE to dust mites. A recent method of
detecting nasal sIgE by the direct application of the solid phase of a commercial ImmunoCAP
test showed a sensitivity of 43% and high specificity, and offers promise for future clinical use.

Making the diagnosis can be challenging given the current low sensitivity of assays for the
local sIgE and the need to conduct an in-office NAPT procedure. Studies have suggested
that the basophil activation test might serve as a surrogate marker of LAR although currently
this is available only as a research tool. It has been shown that using the basophil activation test
with D. pteronyssinus extract and olive tree identifies 50% to 66%, respectively, of NAPT
established LAR patients with a specificity of 93%, and showing identical specificity for both LAR
and AR.

In some studies, using NAPT, up to 26% of all rhinitis patients and up to 100% of NAR patients
have LAR. In one population-based observational study which categorized all
rhinitis patients, over 25% and 63% were diagnosed to have LAR and AR, respectively, indicating
that less than 12% had other types of non-allergic rhinitis. The coexistence of dual perennial
LAR and seasonal AR (prick test positive) has also been described. However, prevalence
rates of LAR in China have been reported to be much lower, e.g., 7.7%. LAR is reported to be
more prevalent in women, to be associated with a family history of atopy equal to or greater
than that of AR, and to have a mean onset of 21 years; however, LAR may start in childhood
36% of the time. Local occupational rhinitis, diagnosed by nasal provocation studies,
should be considered in workers with a convincing history but with negative immunological
tests.
The most frequently reported symptoms in LAR are watery rhinorrhea, sneezing and itching, compared to congestion and mucoid rhinorrhea for NAR patients. While most LAR patients are monosensitized, most commonly to dust mite, up to 37% are polysensitized to seasonal and/or perennial allergens. Of particular interest is a significantly lower incidence (2.7%) of animal dander sensitization in LAR patients compared to AR patients (31%). The majority of adult LAR patients have moderate to severe, persistent, and perennial symptoms, with common comorbidities of conjunctivitis (50-65%), and asthma (18%-47%). These studies show that the severity of LAR and associated comorbidities increase with disease duration.

The mainstay of current LAR treatment has consisted of avoidance and pharmacotherapy. However, recent well-controlled trials suggest that if the specific triggering allergen can be accurately identified, subcutaneous allergy immunotherapy (SCIT) or sublingual immunotherapy (SLIT) might be a reasonable consideration. SCIT has been successfully used to treat dust mite, grass, and birch induced LAR, in two different European centers. A randomized, double blind placebo controlled (DBPC) parallel group study demonstrated that SCIT with *Dermatophagoides pteronyssinus* (DP) in LAR DP-sensitized patients produced significant improvement with reduction in total symptom score (47%), reduction in total medication scores (51%), and reduced responses to NAPT-DP (with total suppression in 50% of patients) over a 24-month treatment period. Significant symptom improvement and nasal tolerance to NAPT-DP was noted as early as six months into treatment. A small randomized DBPC 24-month trial of birch SCIT to patients with seasonal AR produced a significant reduction in symptom medication score, a decrease in local sIgE, and an increase in IgG4 levels. In this study, local sIgE levels significantly increased during birch season in all patients, but a blunted seasonal increase was noted at 24 months in the active treatment group. An observational study using pre-seasonal grass SCIT demonstrated significant clinical improvement and increased NAPT nasal tolerance in all patients. However, in this early study, 40% of the SCIT group developed positive skin prick tests after six months of treatment followed by serum sIgE and sIgG antibodies to grass after 12 months of treatment. The same group completed a randomized DBPC study involving 56 AR patients with LAR to grass, established by either a positive NAPT or nasal sIgE ≥ 0.35 kU/L. There was significant improvement in combined symptoms medication score and RQLQ after 6 months of preseasonal treatment. The effect was sustained during the 2nd year when year-round SCIT was used. There was a significant increase in serum IgG4 levels and allergen tolerance with 83% of patients completing at least 6 months of treatment tolerating over 50 times higher concentration of grass pollen during NAPT challenge, with 56% having a negative challenge. In this controlled study, only 7.4% of the active vs. 3% of the control group developed serum sIgE to grass at the end of year one, showing that active SCIT treatment is unlikely to be creating systemic atopy. A larger, prospective ten-year cohort study (2005-2016) of untreated patients with LAR showed a progressive worsening of the rhinitis, increased development of asthma, reduced quality of life, and loss of allergen tolerance. While a significant change was noted after 5 years, this becomes progressively worse throughout the entire 10 years. The development of systemic atopy was not found to be significantly greater in LAR patients (9.7%) vs. matched healthy controls (7.8%).
While the literature supports LAR as a real entity, further large, multi-center, long-term, well-controlled studies with children and adults are needed to better define the prevalence, evolution, diagnosis, and treatment of LAR.

Non-allergic rhinitis (NAR)

By definition NAR is defined as rhinitis that is independent of an IgE mediated mechanism that includes vasomotor rhinitis (VMR) \(^65\) (sometimes referred to as non-allergic rhinopathy or idiopathic rhinitis), infectious rhinitis, food induced rhinitis \(^66\), hormonal rhinitis \(^67\), drug induced rhinitis \(^68\), non-allergic occupational rhinitis \(^69\), atrophic rhinitis \(^70\), Non-allergic rhinitis with eosinophilia syndrome \(^26\) \(^26\), and rhinitis of the elderly. \(^71\). For this reason, Non-allergic Noninfectious Rhinitis (NANIR) is a term sometimes used to describe this group of patients. \(^72\) In reality, NAR can be acute or chronic, is often present in conjunction with allergic rhinitis (“mixed rhinitis”) \(^73\) and is frequently associated with hyper-reactivity of the nasal mucosa. \(^74\) In a study by Rondon, compared to those with AR, patients with NAR were more likely to be older and to have severe congestion and rhinorrhea but less likely to have asthma. \(^49\) The exact prevalence of NAR is unknown, but some estimates suggest that worldwide up to 200 million people have NAR. \(^72\)

Vasomotor rhinitis

Vasomotor rhinitis (VMR), a subtype of NAR, can be acute or chronic and is often activated by temperature and humidity changes, especially cold dry air, airborne irritants, strong odors, including tobacco smoke, and/or exercise. \(^75\) VMR, often a diagnosis of exclusion, is frequently referred to as idiopathic rhinitis. \(^76\) The symptoms of VMR are variable, consisting mainly of nasal obstruction and increased clear secretion. Sneezing and pruritus are less common. Cough is also a common component of VMR. \(^77\)

“Idiopathic rhinitis”, is sometimes used as an alternative term to VMR, and usually excludes NARES. \(^78\) However, the term is confusing as some studies have found high levels of eosinophils and mast cells in some patients categorized as having “idiopathic rhinitis”. \(^79\) In this practice parameter we do not use the term.

The diagnosis of VMR is based on exclusion of other forms of rhinitis, especially allergic rhinitis, infectious rhinitis, and anatomic/surgical structural changes of the nose and sinuses. The history is the most important determinant leading to diagnosis. The physical exam findings can vary widely and laboratory tests, skin prick tests and sIgE are helpful only to exclude allergic rhinitis. Nasal challenge for VMR, to determine nasal hyperresponsiveness, e.g., using cold dry air or hypertonic saline in a challenge chamber, may be used in research to assess drug efficacy but is rarely used for clinical diagnosis. \(^77, 80\) More recently, optical rhinometry with intranasal capsaicin challenge has been demonstrated to assist in the diagnosis of a subset of VMR patients with non-allergic irritant rhinitis. \(^81\)

While the pathophysiology of VMR is not fully understood, there is evidence that it involves
a neurogenic pathway with an increase in neural efferent traffic to the nasal mucosa with
an imbalance between parasympathetic and sympathetic nasal innervation. Support for
this is partially based upon the beneficial effects of ipratropium bromide and vidian
neurectomy (the vidian nerve contains both the parasympathetic and the sympathetic
innervation to the nasal mucosa). Subjects with predominant rhinorrhea (sometimes
referred to as cholinergic rhinitis) appear to have enhanced cholinergic glandular secretory
activity which can be effectively reduced with the use of atropine and ipratropium
bromide. Patients with predominant symptoms of nasal congestion appear to have
nociceptive neurons that have heightened sensitivity to stimuli such as temperature
change, airborne irritants, foods (especially hot and spicy foods), alcoholic beverages, cold
dry air, and exercise. Measurement of neuropeptides such as substance P in models of
hypertonic saline and cold dry air induced rhinitis further support a neurogenic mechanism
for VMR.

However, somewhat conflicting research based upon the response to intranasal capsaicin,
a selective transient receptor potential vanilloid 1 (TRPV1) receptor agonist, suggests that
nociceptive C fibers in the trigeminal nerve lead to hypersensitivity of the TRP ion channels
on sensory afferent neurons innervating the nasal mucosa and that this can induce the
symptoms of VMR. In clinical studies patients with irritant rhinitis (IR) have higher TRPV1
expression in the nasal mucosa and higher concentrations of substance P in nasal
secretions when compared to controls. From these data, the term “neurogenic rhinitis”
has been proposed to replace VMR and idiopathic rhinitis to describe this type of NAR.

Infectious Rhinitis
Infectious rhinitis and rhinosinusitis may be acute or chronic. Infectious rhinitis may range from
self-limited rhinitis secondary to common viral upper respiratory infections to more severe disease
caused by other pathogens, such as fungal infections in an immunocompromised patient. Acute
infectious rhinitis is usually a result of 1 of many viruses, but secondary bacterial infection with
sinus involvement (bacterial rhinosinusitis) may be a complication. Viral infections account
for as many as 98% of acute infectious rhinitis and the majority of rhinitis symptoms in the
young child. Symptoms of acute infectious bacterial rhinosinusitis include nasal congestion,
mucopurulent nasal discharge, pain and pressure, headache, olfactory disturbance, postnasal
drainage, and cough. While these symptoms may overlap and mimic those of allergic rhinitis
(AR), the presence of a recurrent seasonal pattern of symptoms, the presence of an obvious
allergic trigger, and symptoms of nasal or ocular pruritus strongly suggest the diagnosis of
AR. This diagnostic distinction is important to avoid inappropriate treatment of AR.

Inappropriate prescribing of antibiotics is often secondary to misinterpretation of the
symptoms and signs of infectious viral rhinitis/rhinosinusitis with bacterial rhinosinusitis. This
has led to over prescribing antibiotics and a subsequent increase in antibiotic resistance. Recent
research demonstrates antibiotic prescribing rates as high as 69% to 79% for acute infectious
rhinitis, which may account for up to 60% of all antibiotic prescriptions written by providers,
despite often a lack of benefit and increased risk of adverse effects, including resistance.
Symptoms distinguishing viral versus bacterial infectious rhinitis/rhinosinusitis are minimal and recent evidence suggests that separating viral from bacterial infections based on clinical presentation is often not possible. In addition, since viral induced infectious rhinitis/rhinosinusitis can cause sinus CT changes that mimic acute bacterial rhinosinusitis, a CT scan should be deferred unless complications are a concern. Up to 70% of children with viral infections and as many as 87% of adults will have abnormalities on CT scan during the common cold. Similarly, nasal culture and cytology of nasal secretions provide minimal assistance in distinguishing non-bacterial infections from bacterial rhinosinusitis and often positive bacterial cultures from the nose or sinus may represent colonization and not a pathogen. The transition from viral infectious rhinitis to bacterial rhinosinusitis and appropriate treatment for the rhinosinusitis has been a focus of treatment guidelines due to the resistance of bacteria that are known to cause acute bacterial rhinosinusitis. Most guidelines suggest deferring antibiotic treatment for 7 to 10 days after onset of symptoms of infectious rhinosinusitis to avoid overuse of antibiotics. Controversies in the management of chronic rhinosinusitis are addressed in the most recent Joint Task Force publication on rhinosinusitis.

Unique populations susceptible to frequent or persistent and refractory infectious rhinitis include patients with anatomic abnormalities of the nares and sinuses, chronic rhinosinusitis with nasal polyps, ciliary dysfunction, cystic fibrosis, primary immunodeficiency, acquired immunodeficiency and children. The differential diagnosis of infectious rhinitis in children includes not only AR but foreign bodies, acute S. aureus bacterial infection of the nares and enlarged or infected adenoids.

Food induced rhinitis: Gustatory Rhinitis
The main symptom is clear rhinorrhea after ingestion of food, especially hot and spicy foods. The mechanism is thought to be a neurologic reflex of the non-cholinergic, non-adrenergic system.

Food induced rhinitis: IgE-mediated food allergy and allergic rhinitis?
Outside of the oral allergy syndrome discussed below, there is no evidence of IgE-mediated food-induced rhinitis symptoms without the presence of anaphylaxis with whole-body symptoms, e.g., hives, difficulty breathing, or diarrhea; therefore, there is no indication to test for food allergens when evaluating patients presenting with symptoms of rhinitis. Furthermore, there have been no published studies of oral food challenges producing isolated rhinitis symptoms. With the specificity of both skin prick testing and sIgE testing to foods being less than 50% and recognizing that sensitization does not equate to clinical allergy, unnecessary food testing can lead to unwarranted food avoidance resulting in a reduced quality of life, uncalled-for financial expenditure, and possible nutritional deficiency. Testing with a “panel” of foods without attention to the medical history and epidemiology of allergic rhinitis, can result in mismanagement.

While a high rate of sensitization to certain food (fruits, nuts, and vegetables), as demonstrated by prick skin tests or sIgE, is reported in patients with pollen-induced AR, e.g., birch, mugwort,
ragweed, and grass, most of these patients will not experience symptoms when ingesting cross-reacting foods. AR patient-reported prevalence of the OAS varies between 6 to 93%, generally being higher in adults vs. children; females; patients having severe rhinoconjunctivitis symptoms, multiple pollen allergies, and longer duration of AR; and in geographical locations with high pollen levels. While there have been limited studies utilizing oral food challenges to diagnose OAS in patients with AR, these have reported a much lower prevalence rate of 0.1% to 4.3%. There have been, unfortunately, no studies in the United States that have adequately studied the prevalence of OAS including the development of rhinitis symptoms upon ingestion of pollen-related foods. In patients with OAS, symptoms of itching and swelling are usually mild and limited to the oropharyngeal area, but systemic reactions, including AR symptoms, have been reported. One large review reported that 9% of patients with OAS had systemic reactions beyond the gastrointestinal tract which, at times, included nasal congestion, rhinorrhea, and sneezing. In fact, patients with plant food reactions are at much lower risk of having systemic reactions if they have concurrent AR pollinosis compared to those without pollen-induced AR.

Food induced rhinitis: Alcohol-induced rhinitis symptoms

Alcohol-induced upper airway symptoms are felt to be due to alcohol hyperresponsiveness (including vasodilator effects) and not due to “alcohol allergy”. Nasal congestion is the most common alcohol-induced upper airway symptom, followed by rhinorrhea. Alcohol-induced upper respiratory symptoms have been reported in up to 14% of healthy individuals, 33% of asthmatics and 75% of patients with aspirin-exacerbated respiratory disease (AERD). Alcohol hyperresponsiveness correlates with the severity of the nasal inflammatory response, being greater in patients who have NSAID exacerbated respiratory disease or chronic rhinosinusitis with nasal polyps (CRSwNP) [with or without asthma] compared to patients with AR or chronic rhinosinusitis without nasal polyps (CRSsNP). In asthmatics, a corresponding increase in lower respiratory symptoms is also noted.

While the triggering mechanism for alcohol-induced respiratory symptoms is unknown, the elevation of systemic cysteinyl leukotrienes observed following alcohol consumption may be at least one major contributing factor. In some patients with AR, alcohol-induced symptoms may be intermittent, e.g., only present during seasonal exacerbations, may appear one hour or later following ingestion, have a duration of more than one hour but less than one day, and may require between 1-3 drinks for symptom provocation. For most affected patients, any alcoholic beverage can provoke symptoms, however, chronic rhinosinusitis patients without asthma have reported that wine may be worse than other alcoholic beverages. Alcohol-induced symptoms in patients with NSAID exacerbated upper respiratory disease have been reported to diminish following aspirin desensitization. With the above noted association of alcohol-induced rhinitis symptoms with CRSwNP, CRSsNP, asthma, and NSAID-exacerbated respiratory disease, the clinical history of alcohol as a trigger for rhinitis symptoms should prompt the health care provider to consider these diagnoses and to pursue further diagnostic testing, e.g., rhinoscopy or spirometry, if indicated.
Hormonal rhinitis

Estrogen and progesterone-induced changes occurring with pregnancy, menstrual cycle, menopause and puberty can all affect nasal congestion. Increase of estrogen can cause nasal vascular engorgement leading to congestion. In addition, progesterone and estrogen can increase eosinophil migration into the nasal mucosa in contrast to testosterone which decreases eosinophils in the nasal mucosa. This association of hormones with eosinophils may account for the greater prevalence and severity of rhinitis in females following puberty. Rhinitis associated with pregnancy presents with congestion and while this may be secondary to an increase in estrogen and progesterone, the exact mechanism is not known. Other endocrine diseases such as hypothyroidism and acromegaly also have been associated with nasal congestion.

Drug induced rhinitis

Drug-induced rhinitis can be classified based upon proposed mechanism of action as local inflammatory, neurogenic, and idiopathic. An acute inflammatory response may be induced following the ingestion of ASA or other NSAIDS with isolated nasal symptoms or nasal symptoms as part of the NSAID-exacerbated respiratory disease with acute asthma symptoms and associated chronic rhinosinusitis with nasal polyposis. Disruption of the sympathetic and parasympathetic tone by alpha and beta-adrenergic blockers produce rhinorrhea and nasal congestion through a neurogenic mechanism. The responsible pharmacological agents may be 1) centrally-acting sympatholytic, e.g., clonidine, reserpine, and methyldopa; 2) peripherally-acting sympatholytic, e.g., guanethidine and phentolamine; 3) ganglion-blocking, e.g., trimethaphan, or 4) vasodilators (phosphodiesterase type-5 inhibitors), e.g., sildenafil. No mechanism has been clearly identified for many drugs that can produce nasal symptoms, e.g., calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, gabapentin, and psychotropics, e.g., risperidone and chlorpromazine. The effect of exogenous estrogens and oral contraceptives on nasal physiology is uncertain although it has been suggested that oral contraceptives may reduce allergen-provoked nasal congestion during ovulation but increase sneezing at the end of the menstrual cycle. Overuse of topical decongestants can result in rhinitis medicamentosa, a form of “drug-induced rhinitis”, which is further discussed under the “Intranasal Decongestants” section.

Work related rhinitis

Work related rhinitis is comprised of 1) de novo occupational rhinitis (due to exposures from a particular occupational environment, not usually encountered outside the work environment) and 2) work exacerbated rhinitis (WER) (pre-existing or concurrent - allergic or non-allergic - rhinitis that is worsened by workplace exposures). Most occupational rhinitis is due to high molecular weight agents (>10 kDa) and is IgE and Th2 cell driven. Low molecular weight (<10 kDa) occupational sensitizers may also induce occupational rhinitis symptoms through mechanisms without associated IgE. Following specific inhalation challenge, high molecular weight agents produced a significantly higher level of acute-phase reactant proteins, cell adhesion molecules, endothelial growth factors and vitamin D binding-proteins when compared to low molecular weight agents. In WER, aggravation
of rhinitis symptoms is often caused by non-allergic irritant triggers, such as from cold dry air, dust particles, smoke, chemicals or strong odors. Rarely, when a single high-level exposure or multiple low-dose exposures to an irritant gas, vapor, dust or smoke results in chronic rhinitis, this is referred to as reactive upper airways dysfunction syndrome (RUDS). In nasal mucosa biopsies of individuals exposed to chlorine dioxide, pathological changes found include lymphocytic inflammation of the lamina propria, epithelial desquamation, and increased number of nerve fibers. Analogous to irritant-induced asthma/reactive airways dysfunction syndrome, the predominant basis for making the diagnosis of RUDS is based upon occupational history.

Atrophic rhinitis

Atrophic rhinitis is a chronic nasal condition associated with atrophy of the nasal mucosa and which paradoxically presents with nasal congestion due to a sensation of decreased airflow, likely a result of decreased airflow resistance. Atrophic rhinitis can be categorized as primary or secondary. While the pathophysiology of primary atrophic rhinitis is unknown, it is associated with mucosal colonization, predominantly with *Klebsiella ozaenae*, although other organisms have also been described. Primary atrophic rhinitis is more commonly seen in young to middle-aged adults in developing countries with dry climates, e.g., Saudi Arabia, China, Africa, and India and is uncommon in the United States and Europe. One United States study of atrophic rhinitis patients, categorized approximately 19% as primary atrophic rhinitis with a mean age of 52 years. It is characterized by progressive atrophy of the nasal mucosa, resorption of underlying bone and turbinates, nasal dryness, and foul-smelling nasal crusts associated with a constant awareness of a bad smell. Biopsy findings consist of squamous metaplasia, glandular cell atrophy, and loss of pseudostratified epithelium. By definition, there is no history of nasal surgery or trauma in primary atrophic rhinitis as is often the case in secondary atrophic rhinitis.

Secondary atrophic rhinitis is more common in the United States and less severe than primary atrophic rhinitis. Secondary atrophic rhinitis often develops as a result of excessive nasal surgery, trauma, irradiation, or chronic granulomatous nasal infections. Therefore, patients with secondary atrophic rhinitis for which an iatrogenic cause has not been determined should be evaluated for an underlying inflammatory systemic disease, e.g., leprosy, sarcoidosis, or syphilis. Repeated, and often radical, sinonasal surgeries for chronic rhinosinusitis, allergic fungal rhinosinusitis, and/or nasal sarcoidosis produce a widening of the nasal vault, referred to as an “empty nose syndrome”. The empty nose syndrome, as may occur after aggressive resection of the inferior and sometimes middle turbinates, is associated with the perception of severe nasal obstruction and inability to sense airflow through the nose. It is “paradoxical” because examination typically finds widely patent nasal cavities and nasal resistance as assessed by rhinomanometry is normal or low. Some patients sense profound dyspnea even though there is no pulmonary disease.

Treatment has traditionally focused on reduction of crusting. Conservative treatment can consist of nasal saline irrigation, glycerin containing nose drops, nasal emollients, antibiotics, and vasodilators. Surgical interventions attempt to decrease the size of the...
nasal cavities thereby promoting regeneration and increasing lubrication of the nasal mucosa and improving nasal vascularity. This can be achieved by surgically closing the nasal cavities (Modified Young’s procedure) or implanting prostheses submucosally to decrease nasal cavity size. However, a Cochrane review concluded there are no adequate randomized controlled studies of sufficient duration that compare these treatment options.

Non-allergic rhinitis with eosinophilia syndrome

NARES (Non-allergic Rhinitis with Eosinophilia Syndrome) was first was used in 1981 as a term to describe a case series of nonasthmatic patients who reported perennial, intermittent symptoms of profuse clear rhinorrhea and paroxysms of sneezing as well as nasal or ocular pruritus, lacrimation and nasal congestion without complete obstruction. Patients were characterized by elevated nasal eosinophils greater than 20% but with the absence of specific IgE by skin and blood testing in all but 3 of 52 subjects. The original cohort included no patients with clinical evidence of chronic rhinosinusitis with nasal polyps. Oral aspirin and inhaled methacholine challenges performed on limited numbers of subjects were negative. Onset of symptoms ranged from the first to fifth decades.

However, other systematic evaluations of non-allergic subjects with eosinophilic non-allergic rhinitis showed significant associations with rhinosinusitis with nasal polyps, sinus mucosal thickening and asthma leading to speculation that NARES may be a prelude to the onset of chronic rhinosinusitis, asthma or perhaps NSAID-exacerbated respiratory disease.

Blood eosinophilia is occasionally present in patients with NARES and the term blood eosinophilic non-allergic rhinitis (BENARS) had been proposed but not routinely used to represent this possible condition. The prevalence of NARES is unknown but is suspected to represent 1-5% of children and from 5-15% of adults with rhinitis. One cluster analysis from a single center in Beijing characterized NARES in 23.6 % of predominately adult subjects with chronic rhinitis. Nasal eosinophilia persisted in non-allergic children who were followed throughout the year including the winter season when not exposed to allergens. Total nasal resistance and mucociliary transport time is increased in patients with NARES when compared to healthy controls.

The differential diagnosis of persistent nasal eosinophilia includes perennial allergic rhinitis with positive allergy skin or IgE blood tests, local allergic rhinitis, rhinosinusitis with nasal polyps, chronic rhinosinusitis without polyps, eosinophilic granuloma, allergic fungal rhinosinusitis and NSAID-exacerbated respiratory disease.

NARES is particularly responsive to corticosteroids. In one uncontrolled study, montelukast 10 mg daily reduced nasal obstruction, rhinorrhea, sneezing and nasal pruritus in subjects with NARES and asthma. Intranasal cromolyn was studied and found to have no benefit in NARES. To date there has not been consensus regarding the specific clinical criteria for diagnosis of NARES. The lower limits of nasal eosinophilia required for diagnosis has been variable...
ranging from 5 to 25% and the percentage may vary depending on specimen type.173, 174 Current clinical guidelines have not recommended routine assessments of nasal eosinophils.1 The diagnosis of NARES should be considered in non-allergic patients presenting with prominent symptoms of perennial rhinorrhea and sneezing in the absence of facial pain, nasal obstruction, rhinosinusitis with nasal polyps on rhinoscopy and sinus mucosal thickening in individuals with notable response to nasal steroids or with eosinophilia in blood or if assessed in nasal secretions.

Diagnosis and Management of Rhinitis

Methods and Overview of the Practice Parameter Guideline Development Process

This guideline contains systematically developed recommendations intended to optimize care of adult and adolescent patients (≥ 12-15 years of age) and to assist physicians and/or other health care practitioners and patients to make decisions regarding diagnosis and therapy for rhinitis. Even though many treatments are approved for younger children, the application of recommendations to children would be partially based on data extrapolation from adult studies and would therefore be less certain. This guideline updates “The diagnosis and management of rhinitis: an updated practice parameter” published in 2008.1 This guideline was not intended to be a GRADE document such as we published in 2017 update for a limited number of questions for SAR.[reference citation 375] Because GRADE documents require a comprehensive literature search, systematic review, and meta-analysis for each question, they require substantial resources, making it cost prohibitive to attempt to conduct a GRADE analysis for all of the questions for which clinicians would like an answer. In addition, for many questions, there is very limited evidence and the workgroup/JTFPP must rely upon expert evidence and opinion. Therefore, in this guideline the only GRADE recommendations are those that were previously published in the 2017 Rhinitis guideline update. The remainder of the recommendations are Consensus Based Statements which are based, at best, on a recent literature search of PubMed to update or add to the 2012 Rhinitis document. We have changed our method of grading our recommendations to be more transparent, choosing words that are used in a formal GRADE document, e.g., strong and conditional, to be consistent in terminology and to maintain a common thread. However, the use of these words do not imply that we are equating our recommendations to the rigor required by a GRADE document.

The strength of the consensus-based statements is determined to be either strong or conditional as defined below. The certainty of evidence for each recommendation is determined to be high, moderate, low, or very low as defined below. When the JTFPP did not have adequate published evidence with which to determine the certainty of evidence but recognized, nonetheless, the need to provide guidance to the clinician, the consensus-based statements were based upon the collective expert opinion and experience of the workgroup and JTFPP. We have provided the tabulated vote for and against each such statement.

The guideline development process involves several stages. The workgroup begins the process by developing a list of key clinical questions and topics to be addressed. At least two workgroup
members are assigned to write and review each section. A PubMed literature search is
completed to determine the most updated information for each consensus based statement
and discussion. The draft sections are reviewed by the workgroup chair and co-chair with
subsequent revision by the authors. Subsequently, all sections are reviewed and revised by the
entire workgroup through several rounds of electronic and teleconference reviews. The
guideline is reviewed in detail by the JTFPP and revisions, when needed, are made in
conjunction with the workgroup. The external review follows as described above under
“Resolving conflict of interest” in the preface.

Clinical history and physical examination

Consensus Based Statement # 1: We recommend that the clinician complete a detailed
history and a physical examination in a patient presenting with symptoms of rhinitis.
Strength of Recommendation: Strong
Certainty of Evidence: Low

Consensus Based Statement # 2: We recommend that for patients presenting with rhinitis
symptoms, a review of all current medications should be completed to assess if drug-induced
rhinitis may be present.
Strength of Recommendation: Strong
Certainty of Evidence: Ungraded due to lack of studies addressing this specific issue
Note: Unanimous vote in favor by workgroup and JTFPP

Clinical history in rhinitis patients

The most important single element for establishing the diagnosis of rhinitis, allergic or non-
allergic, and differentiating it from other conditions with overlapping symptoms, is the clinical
history. The age of onset, duration, frequency, severity, timing during the year,
suspected triggers, pattern of presentation, and progression of each patient-specific symptom
should be obtained and recorded. The history should include the success or failure of past
therapeutic interventions, including self-prescribed over-the-counter medications,
homeopathic agents, or physician-prescribed treatments. The family history and personal
history of comorbid respiratory conditions, e.g., asthma and chronic rhinitis with or without
chronic rhinosinusitis should be discussed. Because patients may not recognize symptoms of
asthma, a history of symptoms suggestive of asthma, e.g., wheezing, shortness of breath, chest
tightness, and cough, should be sought, and if appropriate from symptoms, spirometry
obtained. As noted earlier, AR coexists in about 75% to 80% of all patients with asthma, in
nearly 100% of those with allergic asthma, and is a marker for more difficult-to-control or
severe asthma. The overall medical, social, and psychiatric history, medication history (current
and past), environmental exposures in the home or workplace, and family views on disease
state and healthcare should be included in the patient history. As the final therapeutic decisions
will involve shared decision-making, the history should explore the wishes and desires of both
the patient and family in selecting diagnostic procedures and therapeutic interventions,
including their willingness to adhere to these therapies.
In clinical practice, especially in primary care, the diagnosis of AR is often made solely by history. The use of validated questionnaires is more beneficial for excluding allergic rhinitis than for confirming allergic rhinitis. The use of one validated 4-question screening tool has been shown to have a high negative predictive value for positive skin prick tests to common aeroallergens. Furthermore, if a patient has a late onset of symptoms (> age 45), no family history of allergies, no seasonality of symptoms or symptoms around cats, dogs or other furry pets and has trouble with non-allergic triggers such as deodorants/fragrances, the likelihood of having a component of non-allergic rhinitis before diagnostic skin or serologic testing is 98% predictive. While the history has greater reliability and predictive value than solely relying upon the physical exam, the combination of history and physical exam is still advised.

Cough and Rhinitis:
Chronic cough, often defined as cough persisting for > 4 weeks (children) or 8 weeks (adults), in immunocompetent and non-smoking patients is usually due to upper airway cough syndrome (UACS), formerly referred to as postnasal drip syndrome; asthma; and/or gastrointestinal reflux disease, with UACS being the most common cause. While the pathogenesis of chronic cough has often been attributed to some combination of upper airway inflammation; nasobronchial reflex; cold, dry air stimulation; inflammatory mediators from the systemic circulation; or central and peripheral neuroplasticity, a clear pathway has not been shown experimentally.

Cough as a consequence of rhinitis, especially AR, is often underappreciated, due in large part to a lack of high-level evidence. Overall, guidelines minimize or conclude that there is low level evidence associating AR with cough without the presence of concurrent asthma. Cough is often considered to be a comorbidity of AR rather than viewed as a direct symptom of AR. In one study, rhinitis was found to be an independent risk factor for the development of cough in adults. Furthermore, in one large multinational observational study, 47% of patients with AR frequently reported cough as a symptom although only 11% had cough as the main reason for seeking medical attention. In a prospective study, cough as a symptom increased from mild intermittent to moderate/severe persistent AR.

Cough sensitivity has been described to be heightened in AR patients, both during and outside of pollen season. With up to 23% of patients with chronic cough having at least two contributing comorbidities, e.g. AR with postnasal drip and GERD, the complexity of managing chronic cough becomes magnified.

The mechanism of cough in AR has often been explained both as a rhinobronchial reflex and as part of the UACS. In nasal challenge studies of AR patients, cough was described most frequently in perennial AR patients. Patients with persistent AR report more postnasal drip along with more cough. The mechanisms of cough from UACS in in children may differ from adults and may differ among children of different age groups. In one Chinese study, rhinitis was the major pathogenesis in the school-age children, whereas it was adenoid hypertrophy in a pre-school children group, indicating that mechanical obstruction may be a major cause of UACS in some children.

Frequently, cough in the AR patient is related to concomitant asthma or nonspecific bronchial hyperreactivity, often undiagnosed. Furthermore, bronchial biopsy studies in AR patients without asthma have shown inflammatory cell infiltrate and active structural remodeling of the lower airways similar to that of patients with asthma, thereby potentially contributing to cough in these patients.
While intranasal corticosteroids are often used to treat UACS, high quality evidence is lacking. INCS have been shown to reduce cough sensitization in AR patients. Nasal-pharyngeal saline irrigation was shown to be more effective at reducing day and nighttime cough score and in lowering nasal lavage histamine and LTC4 compared to INCS.

Physical Examination:

For a patient with rhinitis symptoms, a physical exam should be completed that encompasses not only the upper airway but also the lower airway, eyes, ears, and skin, to identify findings that may suggest the presence of a co-morbid allergic or non-allergic condition. (see Table 6 for more details). These co-morbid conditions may include accompanying allergic conjunctivitis, otitis, eustachian tube dysfunction, chronic rhinosinusitis with and without nasal polyps, asthma, and/or atopic dermatitis. Documentation of normal findings, e.g., no septal perforation, is important to establish baseline exam findings prior to the prescribing of medications that might lead to adverse events. While specific nasal and oropharyngeal physical exam findings, e.g., pale, boggy nasal mucosa, allergic shiners, and pharyngeal hyperplasia, may support the diagnosis of allergic rhinitis, there are no pathognomonic findings that distinguish allergic vs. non-allergic vs. infections rhinitis. Furthermore, a patient with a history of rhinitis who is asymptomatic or minimally symptomatic at the time of the physical exam, may have minimal or no abnormal findings. While conducting a physical exam is recommended by all major rhinitis guidelines in order to make the diagnosis of allergic rhinitis, the very limited, low-quality research evidence that is available demonstrates a much lower sensitivity and specificity and high interpreter variability for the physical exam when compared to the patient’s history for making a diagnosis of allergic rhinitis, suggesting that both are essential to increase diagnostic accuracy. Considering both the high prevalence of allergic and non-allergic rhinitis and the large number differential diagnoses for rhinitis, perhaps the greatest benefit of completing the physical exam is to exclude one of the rare, but potentially life-threatening diagnosis, e.g., intranasal tumor, which may even co-exist with allergic rhinitis.

The nasal pharyngeal exam can usually be accomplished with the use of a nasal speculum with appropriate lighting or an otoscope with a nasal adapter, although these provide a more limited view of the nasal cavity than a nasopharyngolaryngoscope. For mucosal edema that prohibits an adequate exam, the use of a topical nasal decongestant may reduce turbinate mucosal edema, allowing for better visibility and delineation of abnormal findings, e.g., distinguishing nasal polyps from polypoidal mucosal hypertrophy. A pneumatic otoscope allows for the assessment of tympanic membrane mobility and presence of transudative fluid. At times, an impedance tympanometer may also be of benefit to assess tympanic membrane mobility and the presence/absence of middle ear fluid. A nasopharyngolaryngoscope exam should be completed when a more extensive nasal/pharyngeal/laryngeal exam is required due to suspected structural or functional abnormalities, inadequate therapeutic response or a suspected complication, e.g., deviated septum, rhinosinusitis with or without nasal polyps, foreign body, nasal septal perforation, or vocal cord dysfunction.
Differential Diagnosis of Rhinitis:
The differential diagnosis of chronic rhinitis symptoms includes allergic rhinitis, non-allergic rhinitis, mixed rhinitis, including the rhinitis specific subtypes discussed in previous sections; common conditions that mimic rhinitis such as rhinosinusitis with or without nasal polyps and nasal septal deviation; and more uncommon conditions. (Table 5) A comprehensive history, physical examination, and appropriate testing is important to ascertain the correct diagnosis as this will help direct the therapeutic approach recognizing that some diseases mimicking rhinitis can lead to substantial morbidity and even mortality. Furthermore, more than one cause of nasal symptoms can be present concurrently and contribute to the rhinitis-induced morbidity.

Selected conditions that may mimic rhinitis:
Nasal Septal Deviation: NSD is a common cause of fixed nasal obstruction leading to nasal congestion. It appears to be as common an anatomical cause of congestion as nasal valve collapse and turbinate hypertrophy. It may cause bilateral or unilateral congestion and is often associated with nasal valve collapse and compensatory turbinate hypertrophy. The importance and effectiveness of septoplasty for NSD does not appear to be universally accepted.

Nasal Valve Collapse: The internal nasal valve is the narrowest portion of the nasal cavity and is the anatomical area bounded medially by the nasal septum, and laterally by the inferior edge of the upper lateral cartilage and the anterior aspect of the inferior turbinate. As such the nasal valve is the area most commonly associated with the subjective perception of obstruction and is responsible for more than 2/3 of the airflow resistance produced by the nose. Nasal valve collapse refers to any weakness or further narrowing of the nasal valve and can result in change of airflow that is perceived as nasal congestion. The nasal examination should note the patency of the nasal valve and any alar collapse. If there is improvement in breathing when performing the Cottle maneuver—pulling the patient’s cheek laterally to open the nasal valve angle—this may suggest nasal valve pathology.

Turbinate Hypertrophy: Hypertrophy, with or without concha bullosa, can account for severe unilateral or bilateral obstruction and accounts for severe congestion equally as commonly as nasal valve collapse and septal deviation. Hypertrophy can be primary, e.g., from allergic and non-allergic rhinitis or compensatory, often being associated with congenital or traumatic septal deviation. While medical treatment for some causes of turbinate hypertrophy, e.g., allergic rhinitis, can be very effective, not infrequently a surgical approach will be required for other causes. The consensus for treatment in refractory cases can include turbinate reduction.

Cerebral Spinal Fluid Leak usually presents as a unilateral clear rhinorrhea, without congestion, often worsened in the upright position, and with increased in frequency following head trauma or surgery; however, some cases may be spontaneous. Suggested diagnostic testing in the past included glucose determination, normally found in CSF, but not in nasal secretions.
determination of beta-2 transferrin levels in nasal drainage is now the preferred test. Nasal drainage can be collected and remain stable at room temperature for a week or more. For diagnostic confirmation and preparation for surgery, high resolution CT and magnetic resonance cisternography are accurate, non-invasive and complementary. Treatment is often surgical in the form of endoscopic or open repair to prevent complications which include meningitis.

Adenoidal Hypertrophy (AH) is one of the most common anatomic causes of nasal obstruction in children. Lateral X-ray of the nasopharynx is an effective tool to assess for AH in children and findings correlate well with symptoms. The combination of clinical assessment (good specificity) with lateral X-ray (good sensitivity) is one good method for assessment of the degree of AH. In addition, when feasible, the severity of AH can usually be adequately assessed by the nasopharyngolaryngoscope exam. Complications include acute and recurrent otitis, otitis media with effusion, hypoacusia, altered speech development, and sleep disordered breathing. Prolonged mouth breathing may lead to defective dental growth and facial bone development. Medical therapy includes topical nasal corticosteroids, found to be effective with high quality evidence, montelukast or a combination of both; however, data suggest that single drug therapy may be just as effective as the combination. When medical therapy fails, surgical removal should be considered. Young age and apnea hypopnea index greater than 1 increase the likelihood that surgery will be necessary.

Nasal Foreign Body is common among young children. Most cases present with unilateral congestion and foul-smelling purulent rhinorrhea. Foreign bodies are estimated to account for 30% of ENT emergencies of which 19% are intranasal. Complications of nasal foreign bodies include infection, nasal perforation and epistaxis. Of particular importance is the increase of nasal impaction with button batteries that can be corrosive and lead to septal perforation. Removal may require general anesthesia, especially in cases of prolonged impaction because of associated inflammation.

Ciliary Dyskinesia can be primary or secondary. Secondary ciliary dysfunction can result from chronic infections, irritants or multiple nasal surgeries and might be transient and reversible. Primary ciliary dyskinesia (PCD) is a rare genetic disorder, referred to as immotile-cilia syndrome (IMCS), that may present with cough, nasal congestion and symptoms of asthma, chronic rhinosinusitis with nasal polyps (in children and adults), bronchiectasis, recurrent otitis, rhinitis and rhinosinusitis. In addition, infertility and situs inversus may complicate IMCS. Unfortunately, there is no “gold standard” for the diagnosis of PCD. Most of the individual tests are subject to a false positive and/or a false negative result. An algorithmic-driven approach using a combination of tests has been published both by the European Respiratory Society (ERS) and the American Thoracic Society. Given a suggestive history and the exclusion of cystic fibrosis and immunodeficiency disorders, screening tests start the diagnostic process. In the past, screening tests included saccharine transit time or nasal challenge with tagged particles but these tests are no longer recommended. Currently, the first step in the ERS algorithmic driven approach is to obtain nasal nitric oxide (nNO) and a nasal mucosal brushing for high-speed videomicroscopy analysis (HSVA). If these are equivocal or normal a nasal
mucosal brush specimen is sent for transmission electron microscopy and for cell culture and repeat HSV 240. If the results are still equivocal, genetic testing for known PCD variants is then completed. 240 However, it is possible for the patient to have a yet unrecognized genetic defect. Many of the tests above described are only available in specialty centers. Additional testing methods, e.g., inhalation of colloid albumin tagged 99Tc, are available only as a research tool.

Pharyngonasal reflux secondary to prematurity or neuromuscular diseases may present as congestion in early life. In addition, esophageal reflux can cause nasal symptoms in adults and children and even predispose to obstructive sleep apnea. 242 The most common symptom of eosinophilic esophagitis is reflux and EOE is frequently associated with rhinitis and especially symptoms of allergic rhinitis. 243 Testing for and treatment of reflux in sinonasal disease lacks consensus and most available data refer to reflux causing pharyngeal and laryngeal disease without focus on isolated nasal symptoms. 244, 245

Nasal/Sinus Tumor: Two recent documents from the World Health Organization (WHO) address ENT tumors. A 2018 document discusses the classification of ENT tumors. 246 An earlier WHO document from 2017 addresses clinical characteristics and imaging findings of benign masses of the nose and sinuses. 247

Vasculitis, sarcoidosis and other systemic diseases: The differential diagnosis of systemic diseases that can cause nasal symptoms is not included in this section; however, questioning for constitutional symptoms in all patients with rhinitis can be justified as a way to help exclude a systemic disease manifesting with rhinitis type symptoms.

Consensus Based Statement #3: We recommend that aeroallergen skin prick testing or sIgE testing be completed to confirm the diagnosis of AR in a patient with a history consistent with AR.

Strength of Recommendation: Strong
Certainty of Evidence: High

Consensus Based Statement #4: We recommend that the clinician not perform food skin prick testing or sIgE for foods in their routine evaluation of a patient presenting with the signs and symptoms compatible with the diagnosis of allergic rhinitis.

Strength of Recommendation: Strong
Certainty of Evidence: Ungraded due to lack of studies addressing this specific issue

Note: Unanimous vote in favor by workgroup and JTFPP

Diagnostic testing
Diagnosing rhinitis may be possible combining the patient’s history and physical findings. However, in most cases laboratory and/or skin tests will confirm the diagnosis. Classically this was done by conjunctival challenge to grass pollen by Noon as he pioneered allergen immunotherapy (AIT). 248 Throughout the early part of the 20th century, skin tests both puncture and intradermal were the rule. Once IgE was discovered, in vitro laboratory tests could identify antibodies to specific allergens.
The 2008 Practice Parameters Allergy Diagnostic Tests stated: “Prick/puncture tests or intracutaneous tests are the preferred techniques for IgE-mediated hypersensitivity. It is advisable to use prick/puncture devices, which are relatively nontraumatic and elicit reproducible results when placed on specific areas of the body (i.e., arms or back). Optimal results depend on use of potent test extracts and proficiency of the skin tester (i.e., demonstration of coefficient of variation 30% at different periods). Intracutaneous tests are generally used for specific allergens (i.e., Hymenoptera venoms and penicillin), but they may also be applied if prick/puncture test results are negative and there is a strong historical likelihood of clinical allergy to specific allergens. A 2016 meta-analyses of 7 studies with 430 patients found that skin prick testing sensitivity was 85% and specificity 77%. Intradermal studies were too few to give significant results. A large study from Turkey compared intradermal with skin prick tests. Among 4223 patients with allergic rhinitis and or asthma, prick tests were positive in 57% of subjects. Intradermal tests were applied to 344 patients with marked allergic symptoms; 44% were positive, 33% to dust mites, 22% to fungal spores. These were not compared to nasal challenge results. In some cases of rhinitis, especially where local allergic rhinitis is suspected, a nasal allergen challenge can be helpful.

Severity assessment including QOL by survey instruments and questionnaires

Consensus Based Statement # 5: We suggest that the use of a validated instrument, e.g. scoring system, scale, or questionnaire be considered to help determine the severity of rhinitis and to monitor the degree of disease control.

Strength of recommendation: Conditional

Certainty of evidence: Low

Assessment of AR severity as defined narratively under “Classification of AR” can guide treatment (See Figures 2 and 3). Some investigators have tried to translate the patient’s assessment of severity using a visual analogue scale VAS scale (i.e. 0 to 10 where 0 is no symptoms and 10 is worst possible symptoms). The VAS is sensitive to detect changes in quality of life for patients with AR, but the cut-off value for mild versus moderate-severe varies per study between 4-6. Bousquet et al identified 3052 patients with allergic rhinitis (1895 confirmed with testing) and classified their rhinitis severity based on ARIA guidelines. Patients were asked to answer the question “Overall, how much are your allergic symptoms bothering you today?” by making an “X” on a single 10 cm line which has no markings. The verbal anchors are “Not at all bothersome” (starting at 0) and “Very bothersome” (ending at 10 cm). Receiver operating curves found that this simple one question VAS score correlated well with ARIA severity; a VAS score < 5 cm was classified as having “mild” AR, while a score > 6 cm was “moderate severity”. Subsequently a score of ≥ 5 has been used to represent moderate/severe.

A variety of quality of life (QOL) questionnaires, some specific to rhinitis and others being generic QOL instruments, have been used to assess AR severity. Generic QOL scales offer comparison between different disorders and patient populations; for example, adults with moderate to severe perennial rhinitis and moderate to severe asthma have equal functional
impairment260, 261. In contrast, disease-specific QOL questionnaires, including those specific for rhinitis, describe disease-associated problems more accurately and seem to be reflective of changes associated with therapeutic interventions.259, 262 Visual analog scales may also correlate well with rhinitis symptom scores and quality of life measures, leading to improved symptom control.254 There is also a highly significant correlation between a VAS and the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ). A subsequent study further validated the VAS and determined that changes in the VAS of 23mm were found to be clinically significant.254 A large European study found a smart phone app using the MASK (Mobile Airways Sentinel network)-Rhinitis VAS to be a reliable indicator of AR control and this control correlated well to work productivity.263, 264

Control of Allergic Rhinitis

In addition to assessing AR severity and the impact on quality of life, assessing control is an important goal. As has shown to be helpful with asthma, AR severity can be measured in patients before treatment while measures of disease control are more applicable to optimize therapy in treated patients.265 The Rhinitis Control Assessment Test (RCAT), is a simple, reliable, self-administered 6 item questionnaire utilizing a 5-point Likert scale.266 -269 (See Appendix, Figure 1) Developed to assist physicians in the assessment of patient rhinitis control in clinical practice, it also helps patients appreciate what rhinitis control is. The RCAT was developed and validated against total nasal symptom scores (TNSS) and the physician’s global assessment (PGA). Subsequent work identified a cut-off score of 21 as representing good control, with a Minimal Important Difference of 3. Downloadable forms for administering the RCAT are readily available online.266

The Allergic Rhinitis Control Test (ARCT) is a validated 5-item self-assessment using a 5-point frequency scale with similarities to the Asthma Control Test.103, 270, 271 The Control of Allergic Rhinitis and Asthma Test 25 is a validated 10-item questionnaire that was tested in patients consulting an allergist.272 -274 Limitations exist for control-based classifications as it is not clear whether AR control varies as a function of the disease-inducing allergen, and these questionnaires have not been validated in children.32, 265

PHARMACOTHERAPY

Review of monotherapy and then combination pharmacologic therapeutic options for rhinitis (with an emphasis on treatment of allergic rhinitis) is presented first. Thereafter a stepwise pharmacologic treatment of allergic rhinitis will be presented, using algorithms for intermittent (Figure 2) and persistent (Figure 3) allergic rhinitis. Similarly, pharmacologic treatment algorithms have been developed for the management of intermittent (Figure 3) and persistent (Figure 4) non-allergic rhinitis.

Review of pharmacotherapy classes for rhinitis

Oral Antihistamines
Consensus Based Statement #6: We recommend against prescribing a 1st generation antihistamine and in favor of a 2nd generation antihistamine when prescribing an oral antihistamine for the treatment of allergic rhinitis.

Strength of Recommendation: Strong
Certainty of Evidence: High

Oral antihistamines are of established benefit in allergic rhinitis. The overall efficacy of first-generation antihistamines (e.g. diphenhydramine, hydroxyzine, chlorpheniramine) compared with less/non-sedating 2nd generation antihistamines (e.g. cetirizine and levocetirizine, fexofenadine, loratadine and desloratadine) for the management of allergic rhinitis symptoms has not been adequately studied. However, selecting a second-generation antihistamine reduces the potential side effects including sedation, performance impairment, poor sleep quality and anticholinergic-mediated symptoms (e.g. dry eyes, dry mouth, constipation, urinary hesitancy and retention) that have been associated with the first-generation antihistamines. ¹

First-generation antihistamines may produce performance impairment in school ²⁷⁵-²⁷⁷ and driving ²⁷⁸ ²⁷⁹-²⁸² that can exist without subjective awareness of sedation; ²⁸³ and the use of first-generation antihistamines has been associated with increased automobile and occupational accidents. ²⁷⁸-²⁸² ²⁸⁴ Individual variation exists with respect to development of sedative effects with first-generation antihistamines. ²⁷⁷, ²⁸⁵, ²⁸⁶ One systematic review of first-generation antihistamines concluded that they induced non-amnestic deficits in attention and information processing. ²⁸⁷ One early study compared chlorpheniramine vs. placebo and found that point doses of chlorpheniramine less than 24 mg a day resulted in no significant difference in subjective drowsiness, dizziness, irritability or dry mouth compared to placebo over the remaining 6 weeks of the study. ²⁸⁸ Other studies using chlorpheniramine as a comparator have reported similar increased symptoms of drowsiness, dry mouth and dizziness for the first few days but tolerance to these subjective side effects of this medication occurred over time. ²⁸⁹-²⁹¹ Tolerance to adverse central nervous system (CNS) effects in an individual may or may not occur with regular daily use. ²⁹² Although bedtime dosing of 1st generation oral antihistamines has been suggested as a strategy to avoid daytime sedation, there can be residual CNS effects the next day because some agents have a very long terminal elimination half-life (>24 hours for chlorpheniramine). ²⁹³ Bedtime administration of first-generation antihistamines undesirably increased the latency to onset of restful rapid eye movement (REM) sleep and reduces the duration of REM sleep. ²⁹², ²⁹⁴ Beyond concerns about subjectively perceived side effects, one of the anticholinergic side effects more recently reported in association with 1st generation antihistamines is an associated higher risk of dementia. A 2015 U.S. prospective population-based cohort study suggested a link between higher cumulative use of strong anticholinergics and the risk of developing dementia, with over70% being Alzheimer’s Disease. ²⁹⁵ For dementia, adjusted hazard ratios for 10 years of cumulative anticholinergic use (including first-generation antihistamines, tricyclic antidepressants, and bladder antimuscarinics) compared with nonuse were 0.92 (95% CI, 0.74-1.16) for total standardized daily doses (TSDDs) for 1-90 days, with a proportional increased risk
for longer daily use, with a cumulative 3 years of daily use being 1.54 (95% CI, 1.21-1.96). A longitudinal study showed that the use of anticholinergics in the elderly was associated both with reduced immediate recall and executive functioning was associated in conjunction with increased brain atrophy manifest as reduced total cortical volume and temporal lobe cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes. These findings further support use of second-generation antihistamines over first-generation antihistamines for allergic rhinitis.

Use of first-generation antihistamines in the treatment of non-allergic rhinitis
Patients with non-allergic and allergic rhinitis experience similar symptoms including nasal congestion, post-nasal drainage and rhinorrhea although through different mechanistic pathways. Responses to various treatments in NAR and AR may vary. A major symptom of patients with NAR that is frequently not well controlled despite combination topical nose sprays with anti-cholinergic activity is post-nasal drainage. There are no double-blind placebo-controlled trials evaluating the therapeutic efficacy and safety of 1st generation oral antihistamines like chlorpheniramine maleate for the treatment of NAR/VMR. In a risk/benefit assessment, mindful of a) the considerable concerns about safety of first generation antihistamines as reviewed under discussion for Consensus Based Statement #6, and b) recognition that it is not possible in a standard office setting to accurately assess development of some clinical adverse effects from these agents (e.g. development of subtle changes in cognition or other potential CNS side effects such as decreased reaction time), some clinicians suggest that monitored use of first generation oral antihistamines as an adjunctive anti-cholinergic agent may be considered in patients with nonallergic rhinitis who have bothersome post-nasal drainage refractory to other therapies. The decision to use first generation antihistamines for NAR remains controversial, should be individualized and should involve a physician and patient shared decision-making discussion, reviewing the potential risks and benefits, and patient preferences. If first generation oral antihistamines are used to treat postnasal drip in VMR/NAR, patients should be carefully monitored for any clinically observable side effects, the lowest effective dose should be used and these agents should be discontinued when side effects are identified. Special consideration/caution should be taken into account using these agents in frail elderly patients, individuals with existing known chronic disorders (dementia, Alzheimers, BPH) that would be complicated by their use or those working in occupations involving heavy machinery, driving or flying.

Oral Leukotriene Receptor Antagonists
Consensus Based Statement # 7: We suggest that the clinician not select the oral leukotriene receptor antagonist montelukast for the initial treatment of allergic rhinitis due to reduced efficacy when compared to other agents. Furthermore, serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in some patients taking montelukast. As advised by the FDA, montelukast should be used to treat allergic rhinitis only in patients who are not treated effectively with or cannot tolerate other alternative therapies.

Strength of Recommendation: Conditional
Certainty of evidence: Very Low

Consensus Based Statement # 8: We recommend that the clinician not select an oral leukotriene receptor antagonist for the treatment of non-allergic rhinitis.

Strength of Recommendation: Conditional

Certainty of evidence: Ungraded as no studies

Note: Unanimous vote in favor by workgroup and JTFPP

Leukotriene receptor antagonists (LTRAs) are modestly effective in the treatment of seasonal and perennial allergic rhinitis. Multiple systematic reviews have concluded that LTRAs have effectiveness similar to oral antihistamines with loratadine as the usual comparator, but others find that LTRAs are less effective than antihistamines. LTRAs are less effective than intranasal corticosteroids (INCS). Considering that the LTRA montelukast is equally or less effective than oral antihistamines for AR, and is less effective than INCS, (which would be preferred therapy for more severe allergic rhinitis because of greater effectiveness), clinicians should not routinely offer a LTRA as preferred therapy for patients with AR. Furthermore, as discussed below, serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in some patients taking montelukast. As advised by the FDA, montelukast should be used to treat allergic rhinitis only in patients who are not treated effectively with or cannot tolerate other alternative therapies. (308) In such patients when considering montelukast, a shared-decision making conversation should be utilized.

The use of an oral LTRA in combination with an oral antihistamine may be more effective than monotherapy with an LTRA (montelukast) for allergic rhinitis, although not all studies are consistent with this finding. The combination of an oral LTRA and an oral antihistamine is similarly effective as monotherapy with an INCS for allergic rhinitis though it is likely more costly and burdensome to maintain.

There is no evidence to support the use of LTRAs in non-allergic rhinitis. There is no mechanistic rationale or expert opinion that supports the use of a LTRA in NAR.

Montelukast has been approved down to 6 months of age. It is not associated with somnolence and side effects are uncommon. However, there are post-marketing reports of rare drug-induced neuropsychiatric events including sleep disturbances, depression, anxiety, aggression, psychotic reactions, and suicidal thinking and behavior. Infants are more prone to drug-associated sleep disturbances, children present most often with symptoms of depression and anxiety, and adolescents are more prone to symptoms of depression, anxiety and suicidal behavior. Unexpectedly, a worldwide review of Individual Case Safety Reports (ICSRs) associated with montelukast determined that completed suicides were reported more frequently for children than adolescents or the total population. Most studies are low quality evidence, e.g., case reports or observational studies, mainly in children and adolescents; high-quality epidemiological studies are needed to evaluate the association and quantify the risk of neuropsychiatric adverse events, not only in children and adolescents, but also in adults. It is advised that clinicians monitor patients who may be at elevated risk for suicidal ideation or psychiatric symptoms.
In patients with AR comorbid with asthma, montelukast could result in significant improvements in both conditions compared to placebo and therefore can be considered an option for patients with both conditions. However, due to the only modest efficacy and also the potential increased risks of montelukast compared to oral antihistamines, for the management of AR and comorbid asthma, the clinician should weigh the benefits of montelukast monotherapy versus an inhaled corticosteroid for asthma and an antihistamine or intranasal corticosteroid for AR.

Systemic corticosteroids

Consensus Based Statement # 9: We suggest that for the treatment of very severe or intractable allergic rhinitis, the clinician may consider a short course (5-7 days) of oral corticosteroids.

Strength of Recommendation: Conditional
Certainty of Evidence: Very low

Consensus Based Statement # 10: We suggest that for the treatment of very severe or intractable allergic rhinitis, the clinician not prescribe a depot parenteral corticosteroid for allergic rhinitis due to the potential risks of systemic and local corticosteroid side effects.

Strength of Recommendation: Conditional
Certainty of Evidence: Low

While most clinicians will use a short course (5-7 days) of oral corticosteroids for severe or intractable allergic rhinitis, depot parenteral corticosteroids may be viewed as attractive because the duration of action of a single injection is 3 weeks or longer and is often adequate to treat an entire allergy season. However, there is concern that depot corticosteroids may lead to a higher risk for adrenal suppression than short courses of short acting corticosteroids (e.g. prednisone) dosed once daily. While head-to-head comparisons of short course of oral corticosteroids versus a single injection of depot corticosteroids have not been completed, studies have shown adrenal suppression following a single intramuscular injection of methylprednisolone acetate for allergic rhinitis. The suppression is usually maximum at 72 hours but persists for up to three weeks. Two systematic reviews looking at adrenal suppression from various administration forms, dosages, duration, and disease states found that while higher doses for longer duration increased the risk of adrenal suppression, there is no method of delivery, dosage, or duration for which the risk of adrenal suppression can be safely excluded.

A large retrospective study of Danish National Registries found that in patients with allergic rhinitis, a minimum of one depot corticosteroid injection for at least three consecutive years was associated with an increased risk of osteoporosis and diabetes, with the largest risk increase seen within the first two years of annual use. Although rare, local muscle atrophy and fat necrosis has also been described. With such variability in the development of adrenal suppression, diabetes, osteoporosis, local side effects, and other steroid-induced
adverse effects from one patient to another, the clinician is advised to always use the lowest
dose of corticosteroids for the shortest period of time.

Intranasal agents

Intranasal antihistamines

Consensus Based Statement #11: We recommend that the clinician offer intranasal
antihistamines as an initial treatment option for patients with seasonal allergic rhinitis.

Strength of recommendation: Strong

Certainty of Evidence: High

Consensus Based Statement #12: We recommend that the clinician offer intranasal
antihistamines as a first-line monotherapy option for patients with non-allergic rhinitis.

Strength of recommendation: Strong

Certainty of evidence: High

Consensus Based Statement #13: We recommend that the clinician offer intranasal
antihistamines as a first-line option for patients with intermittent allergic rhinitis.

Strength of recommendation: Conditional

Certainty of Evidence: Ungraded due to lack of studies addressing this specific issue

Note: There was a unanimous vote in favor by workgroup and JTFPP

For relief of nasal symptoms of SAR, intranasal antihistamines are equal to or superior to oral
antihistamines, and may benefit patients who fail oral antihistamine treatment. Intranasal antihistamines (INAH) have a more rapid onset of action compared to intranasal corticosteroids (INCS) and oral antihistamines, are more effective than oral antihistamines in the control of nasal congestion, and provide a favorable safety profile. Comparisons of INCS to INAH for reduction of nasal symptoms are conflicting, with some showing equality and some showing superiority of INCS. In a systematic review of INCS and INAH, INAH provide comparable relief of allergic eye symptoms. Two intranasal antihistamines, azelastine and olopatadine are approved by the FDA for the treatment of seasonal allergic rhinitis. Azelastine is also approved for the treatment of perennial allergic rhinitis and vasomotor rhinitis.

Azelastine has high binding affinity to H1 receptors and can also inhibit H2 antihistamine receptors, as well as the synthesis or expression of mediators of allergic inflammation and neuropeptides. Azelastine may also work in part by desensitizing TRPV1 ion channels which are triggered by hot stimuli, such as capsaicin, and are important in the pathophysiology of NAR. In contrast to azelastine, intranasal olopatadine is a selective H1 receptor antagonist but has also been shown to have some mast cell inhibitory properties, described with the olopatadine eye drop preparation.

Intranasal antihistamines have a rapid onset of action in allergic rhinitis ranging from 15-30 minutes, compared to an average of 150 minutes for oral antihistamines. They have
been shown to improve nasal as well as non-nasal allergic rhinitis symptoms and quality of life. Azelastine has also been shown to be clinically effective in controlling symptoms of non-allergic rhinitis (NAR). Although olopatadine has been demonstrated to significantly reduce nasal symptoms induced by a hyperosmolar mannitol challenge in patients with vasomotor NAR, there are no placebo controlled trials to support its efficacy in relief of NAR symptoms.

Nineteen percent of patients treated with azelastine in the initial clinical trials reported bitter taste lasting around 30 mins. Subsequent studies using azelastine as 1 puff each nostril twice daily reduced total nasal symptoms scores and was associated with less somnolence and bitter taste (0.4% and 8.3%, respectively) compared to what was reported in the pivotal trials (11.5% and 19.7% respectively). Reformulating azelastine nasal spray with sucralose to mask the bitter taste demonstrated similar safety and tolerance profile to the original formulation and a reduction in bitter taste (from 8% to 7%). In contrast to the pivotal SAR studies, somnolence was not an issue for NAR patients compared to placebo (3.2% vs 1.0%).

While the initial clinical trials using a larger dose reported somnolence in around 11%, more recent studies have found rates of 0.4% to 3%, which were equal or only slightly greater than in placebo groups. Intranasal olopatadine was well tolerated with the most common adverse events reported being bitter taste, headache, epistaxis, and pharyngolaryngeal pain with a relatively low incidence of somnolence (<1%).

Intranasal olopatadine and azelastine have been compared in a placebo controlled multicenter trial in patients with SAR and were shown to be equally effective in controlling symptoms. Moreover, their side effect profiles were comparable except for bitter taste which was more pronounced for azelastine. A randomized, double-blind, parallel-group, multicenter non-inferiority study showed no significant difference between intranasal olopatadine and intranasal azelastine in controlling nasal symptoms in patients with non-allergic vasomotor rhinitis. No significant differences were observed for adverse events, including taste, or treatment satisfaction between treatment groups. While taste aversion has been demonstrated to all intranasal antihistamines, taste varies between formulations. Therefore, a trial of a second formulation may identify a preferred alternative formulation in patients who have had symptomatic benefit from an intranasal antihistamine.

Consensus Based Statement # 14: We recommend that when choosing monotherapy for persistent allergic rhinitis, intranasal corticosteroids be the preferred medication.

Consensus Based Statement # 14: We recommend that when choosing monotherapy for persistent allergic rhinitis, intranasal corticosteroids be the preferred medication.

Intranasal corticosteroids (INCS)

Consensus Based Statement # 14: We recommend that when choosing monotherapy for persistent allergic rhinitis, intranasal corticosteroids be the preferred medication. Strength of Recommendation: Strong

Consensus Based Statement # 14: We recommend that when choosing monotherapy for persistent allergic rhinitis, intranasal corticosteroids be the preferred medication. Strength of Recommendation: Strong

GRADE Recommendation (2017): We recommend that for the initial treatment of moderate to severe seasonal allergic rhinitis in patients 15 years of age and older, the clinician use an intranasal corticosteroid over an LTRA. (Also see CBS 7)
Intranasal corticosteroids (INCS) remain the most effective monotherapy for allergic rhinitis and are therefore recommended as preferred monotherapy for moderate to severe allergic rhinitis that have negative impact on quality of life. More recent guidelines continue to support this recommendation. Not only are these agents effective in controlling nasal symptoms in patients with AR, but they have also been shown to be effective in the control of allergic ocular symptoms.

The sensory attributes of INCS (aftertaste, nose runout, throat rundown, and smell) play an important role in patient preference and adherence to therapy. To address some of these concerns, nonaqueous intranasal preparations with hydrofluoroalkane aerosol are now available for the treatment of allergic rhinitis in the United States.

When given in recommended doses INCSs are not generally associated with clinically significant systemic side effects. They have not been shown to affect the hypothalamic–pituitary–adrenal (HPA) axis. A meta-analysis of relevant trials relating to growth in children suggests that short term use of INCS may decrease short-term growth velocity (using knemometry), but there was no such effect on longer term growth velocity (using stadiometry). The heterogeneity of the studies was high in the stadiometry trials. Therefore, when using INCS in children, it is prudent to use the lowest effective dose and monitor growth carefully.

There have been reports of a possible association between the development of posterior subcapsular cataracts and the use of intranasal or inhaled corticosteroids in older patients. Case reports of increased ocular pressure from intranasal corticosteroids have been published; however, adequately powered, blinded studies have not confirmed this adverse effect. A meta-analysis of 10 clinical trials with 2226 patients did not show a significant risk of elevating intraocular pressure or developing a posterior subcapsular cataract in patients with allergic rhinitis using INCS.

The most common side effects of INCS are local and include dryness, burning, stinging, blood tinged secretions, and epistaxis. The incidence of epistaxis ranges from 4% to 8% over short treatment periods (2 to 12 weeks) and can reach 20% in studies carried over a year. Nasal bleeding with long term use of topical nasal corticosteroids may approach 28%. The epistaxis reported from intranasal corticosteroids can be worsened by the use of anticoagulant agents.

Septal perforations, although rare, have been reported. Biopsy specimens from the nasal mucosa of patients with perennial rhinitis who have been treated with INS continuously for 1 to 5 years showed no evidence of atrophy.

Intranasal capsaicin

Capsaicin, a pungent compound found in hot red peppers, topically applied to the nasal mucosa has been shown to reduce nasal hyperreactivity. While capsaicin has not been approved by the FDA for the treatment of rhinitis, it has been used for the treatment of non-allergic or mixed
rhinitis to reduce nasal congestion, rhinorrhea, postnasal drainage, sinus pressure, sinus pain, and headache. Capsaicin is a selective TRPV1 ion channel agonist that reduces nerve conduction of nociceptive C fibers, thereby reducing parasympathetic hyperactivity and neuropeptide release, resulting in attenuation of nasal congestion, rhinorrhea, and postnasal drainage symptoms. Clinical trials investigating the therapeutic benefit of capsaicin on patients with AR did not find a significant effect in reducing nasal hyper-reactivity or in improving rhinorrhea. Cochrane analysis for AR found only one small trial where intranasal capsaicin had a therapeutic benefit. For the treatment of idiopathic NAR, a recent Cochrane analysis found that capsaicin appears to improve nasal symptoms which can last 36 weeks after treatment but this assessment is based on only a few small studies of low scientific evidence quality. When used to treat NAR and VMR compared to placebo therapies, some studies have described significant therapeutic efficacy and safety of chronic usage of local capsaicin formulations. Because all of these trials used different study designs and dosing regimens, the ability to compare primary endpoints is significantly limited. Recent data comparing idiopathic and mixed rhinitis treated with capsaicin demonstrated a slightly increased symptom reduction in the idiopathic treatment group than in the mixed rhinitis group, 79% and 68% respectively. Future well-conducted, large, randomized controlled trials are required to further assess the effectiveness of capsaicin using different concentrations and in NAR patients with mild, moderate, and severe symptoms.

Intranasal decongestants

Consensus Based Statement #16: We suggest that the use of intranasal decongestants be short-term and used for intermittent or episodic therapy of nasal congestion.

Strength of the recommendation: Conditional

Certainty of Evidence: Low

Consensus based statement #17: We suggest that in patients having severe mucosal edema which impairs the delivery of other intranasal agents, an intranasal decongestant be considered for up to 5 days of use.

Strength of Recommendation: Conditional

Certainty of Evidence: Ungraded due to lack of studies addressing this specific issue

Note: There was a unanimous vote in favor by workgroup and JTFPP

Intranasal decongestants, e.g., oxymetazoline and xylometazoline, are alpha adrenergic agonists. They cause improvement in nasal conductance for up to 10 hours resulting in nasal vasoconstriction and decreased nasal edema but they do not block allergen-provoked mediator release. Oxymetazoline and xylometazoline cause similar decongestive effects with statistically significant beneficial changes in nasal resistance, nasal airflow and nasal cross-sectional areas which provide clinically meaningful improvement in nasal congestion. On average, the effect of oxymetazoline begins within 30 seconds. Xylometazoline was found to have superior efficacy for nasal decongestion compared with intranasal corticosteroids in a 28-day AR study. However, intranasal decongestants are not routinely recommended for continuous use because of the potential development of alpha receptor tachyphylaxis and subsequent rhinitis medicamentosa. The development of rhinitis medicamentosa is highly
variable; it may develop within 3 days of use or fail to develop after 6 weeks of daily use. Intranasal decongestants have no effect on itching, sneezing, or nasal secretion and can be associated with local stinging or burning, sneezing, and dryness of the nose and throat.

Concomitant administration of intranasal decongestants and corticosteroids

Recent placebo-controlled studies of perennial and seasonal allergic rhinitis demonstrated that concurrent administration of intranasal corticosteroids and intranasal decongetants provided additional efficacy both subjectively in rapidity of onset compared to the corticosteroid alone and in magnitude of nasal congestion symptom score improvement compared to oxymetazoline alone, and objectively as measured by acoustic rhinometry increases in volume. Furthermore, when the decongestant was given along with the intranasal steroid once a day for up to 4 weeks, the development of rhinitis medicamentosa did not occur. [Also see Statement # 24 for related recommendation about combined use of intranasal decongestants and corticosteroids].

Safety concerns about use of intranasal decongestants in pregnancy are discussed in the later section on “Rhinitis in pregnancy”.

Oral decongestants

Consensus Based Statement # 18: We suggest that oral decongestant agents be used with caution in older adults and children younger than 4 years old, and in patients of any age who have a history of cardiac arrhythmia, angina pectoris, cerebrovascular disease, uncontrolled hypertension, bladder outlet obstruction, glaucoma, hyperthyroidism, or Tourette syndrome.

Strength of recommendation: Conditional

Certainty of Evidence: Low

Consensus Based Statement # 19: We recommend that oral decongestants be avoided during the first trimester of pregnancy.

Strength of recommendation: Strong

Certainty of Evidence: Low

The oral decongestant pseudoephedrine, an alpha-adrenergic agonist, is effective at relieving nasal congestion. It is indicated for nasal congestion due to AR, rhinosinusitis, and the common cold. For the management of concomitant seasonal allergic rhinitis and mild to moderate asthma, the combination of an oral decongestant and a second-generation oral antihistamine significantly reduced both rhinitis and asthma symptoms compared to placebo. Pseudoephedrine is a key ingredient used in making methamphetamine. In an effort to reduce illicit production of methamphetamine, restrictions have been placed on the sale of pseudoephedrine in the United States. This has promoted substitution of oral phenylephrine for pseudoephedrine in many allergy and cold and cough remedies. However, oral phenylephrine has been demonstrated to be ineffective at reducing nasal congestion at doses up to 40mg.
Pseudoephedrine can result in adverse effects such as insomnia, loss of appetite, irritability, and palpitations. 415 Elevation of blood pressure after taking an oral decongestant is very rarely noted in normotensive patients and only occasionally in patients with controlled hypertension. A meta-analysis of 24 trials showed a statistically significant elevation of systolic blood pressure in both normotensive and in patients with controlled hypertension, but these small values, \textbf{0.99 mm Hg and 1.2 mm Hg respectively}, are unlikely to be clinically significant in most patients. 416 However, because of the variation in patient response, patients receiving oral decongestants should be followed for changes in blood pressure. Concomitant use of caffeine and stimulants, such as medications used for management of attention-deficit/hyperactivity disorder, may be associated with an increase in adverse events. 417 Oral decongestants should be used with caution in patients with rhinitis with certain conditions, such as cerebrovascular or cardiovascular disease, hyperthyroidism, closed-angle glaucoma, bladder outlet obstruction, and Tourette syndrome. The problem of rebound congestion is not a factor with the use of orally administered nasal decongestants. 409

Oral decongestants, when used in appropriate doses, are usually well tolerated in children over the age of 6 years of age. However, use in infants and young children has been associated with agitated psychosis, ataxia, hallucinations, and even death. 418-420 At times, even at recommended doses these agents may cause increased stimulatory effects resulting in tachyarrhythmias, insomnia, and hyperactivity, especially when combined with other stimulants. 421 Therefore, the risks and benefits should be carefully considered before using oral decongestants in both adults and children.

Safety concerns about use of oral decongestants in pregnancy are discussed in the later section on Rhinitis in pregnancy.

Intranasal ipratropium

\textbf{Consensus Based Statement # 20: We suggest that in patients with perennial allergic rhinitis and non-allergic rhinitis who have rhinorrhea as their main nasal symptom be offered intranasal ipratropium}

\textbf{Certainty of evidence: Low for PAR, moderate for NAR}

Ipratropium bromide at either 0.03\% or 0.06\% concentrations is safe, well tolerated, and is effective for the treatment of rhinorrhea related to perennial allergic (0.03\%), and non-allergic rhinitis (0.03\%) as well as for the common cold (0.06\%). 422-424 While ipratropium bromide 0.06\% is FDA approved for the treatment of SAR in both children and adults, no randomized controlled trials have been completed to study its effectiveness. 425 Rhinorrhea is significantly reduced in chronic perennial rhinitis, vasomotor rhinitis, gustatory rhinorrhea, and cold-induced rhinorrhea, e.g., skiers nose, but with no significant effect on congestion or sneezing. 422, 426, 427, 428, 429, 430 When ipratropium bromide was administered prior to nasal methacholine challenge in patients with allergic and non-allergic rhinitis there was reduced rhinorrhea and sneezing but there was no significant effect on airway resistance. 424, 431 Rhinorrhea was significantly reduced not only in cold air exposure but also following ingestion of hot soup, leading the authors to suggest that the nasal discharge is reflex-mediated. 432 In PAR, ipratropium bromide was
effective in reducing rhinorrhea for one year when used on a continuous basis. The efficacy of ipratropium appears to especially benefit anterior rhinorrhea. It has not been shown to be of significant value when postnasal drainage is the dominant complaint. The most common adverse effects reported are nasal dryness and epistaxis, although these are usually mild and rarely lead to discontinuation of treatment. As discussed under the section on “Combination therapy”, when ipratropium bromide is combined with an INCS or an oral second-generation antihistamine, an additive benefit has been demonstrated.

Intranasal cromolyn

Consensus Based Statement # 21: We suggest that intranasal cromolyn be offered as an option to be taken just prior to allergen exposure to reduce symptoms of allergic rhinitis from episodic allergen exposures.

Strength of Recommendation: Conditional

Certainty of evidence: Very low

The primary benefit of cromolyn sodium is to stabilize mast cells and thus inhibit the release of mast cell mediators that promote IgE mediated allergic rhinitis. Intranasal administration of cromolyn sodium improves symptoms of SAR when compared to placebo. In PAR, with marked skin test responses, benefit has been found in some but not all studies of patients with PAR. Intranasal cromolyn may reduce nasal eosinophils in patients with AR. Ten milligrams of intranasal cromolyn inhibited allergen induced nasal airway resistance in 80% and 50% of subjects at four and eight hours respectively after the administration of cromolyn, suggesting efficacy for around six hours. A large 2 week multicenter, randomized, double-blind, placebo-controlled, parallel-group design study of the over-the-counter use of intranasal cromolyn sodium demonstrated efficacy (reduction in overall symptoms, sneezing and nasal congestion) and concluded intranasal cromolyn was safe and effective for over-the-counter use.

Nasal cromolyn administered just before allergen exposure can reduce development of symptoms of AR. Therefore, nasal cromolyn can be useful in short term prevention of development of episodic AR symptoms if administered just prior to anticipated exposure to an allergen not normally present in a patient's home or work environment. However, there have been no direct comparative trials between intranasal cromolyn and other treatments for such use.

Cromolyn is reported to have an excellent safety record and has been studied and also reported to be safe in pregnancy. However, there are a very limited number of cases suggesting the possibility of immediate, possibly IgE mediated, reactions to disodium cromoglycate (DSCG).

The treatment effect of intranasal cromolyn in SAR is not robust and some have advocated temporary use of a nasal decongestant while initiating intranasal cromolyn in subjects with near total nasal obstruction. Intranasal cromolyn was studied and found to have no benefit in NARES. A placebo controlled trial of intranasal cromolyn showed no benefit in VMR, although
some anecdotal cases suggest benefit in isolated individuals with VMR. Intranasal cromolyn was found to have no benefit on nasal polyps.

Intranasal cromolyn has similar efficacy to oral antihistamines in the treatment of AR. However, intranasal cromolyn reduced nasal eosinophils in comparison to oral antihistamine.

Intranasal cromolyn may be less efficacious than levocabastine nasal spray in SAR.

Intranasal cromolyn is less efficacious than intranasal steroid sprays in SAR.

Nasal Saline

Nasal saline is commonly used as a treatment for rhinitis and rhinosinusitis in both children and adults. Nasal saline can be beneficial for moisturizing dry nasal passages and clearing out mucus. The preferred method of delivery—nose spray, bottle, pump, irrigation, or nebulizer; the volume; whether isotonic or hypertonic; and the dose frequency have not been established. The use of topical saline is associated with minimal side effects, such as burning, irritation, and nausea; has low cost; and has overall good patient acceptance.

There is a risk of transmission of bacteria and parasites including development of fatal primary amebic meningoencephalitis from using tap water contaminated with *Naegleria fowleri*. The Centers for Disease Control and Prevention and FDA recommend that if tap water is used to prepare saline for nasal irrigation, water should be boiled for 1-5 minutes before cooling and use.

A systematic review of studies on nasal sinus irrigation concluded that when performed regularly over a limited period of up to 7 weeks, there was a positive effect on all investigated outcome parameters in adults and children with AR. A 2018 Cochrane Review on saline irrigation for allergic rhinitis concluded that it may reduce patient-reported disease severity compared with no saline irrigation at up to three months in both adults and children with allergic rhinitis. However, saline nasal irrigation alone is less effective than intranasal corticosteroids alone for allergic rhinitis in children.

Combination therapy

Combination therapy is often used in clinical practice either as directed by the physician or by patient self-treatment. Only a few rhinitis therapeutic combinations have been subjected to rigorous study. The scientific evidence will be presented, when available, but the AR and NAR treatment algorithms are based upon both scientific evidence and expert opinion. The algorithms were developed to assist the clinician in selecting both the preferred monotherapy and when to consider specific agents for combination therapy.

Intranasal corticosteroid and intranasal antihistamines combined

GRADE Recommendation (2017) # 22: We suggest that the clinician consider the combination of an intranasal corticosteroid and an intranasal antihistamine for the initial treatment of moderate to severe nasal symptoms of seasonal allergic rhinitis in patients age ≥12.

Strength of the recommendation: Conditional

Certainty of evidence: High
Consensus Based Statement # 23: We suggest that the clinician consider the combination of an intranasal corticosteroid and an intranasal antihistamine for moderate to severe seasonal allergic rhinitis and perennial allergic rhinitis that is resistant to pharmacologic monotherapy.

Strength of recommendation: Conditional
Certainty of evidence: Moderate

Consensus Based Statement # 24: We suggest that the clinician consider the combination of an intranasal corticosteroid and an intranasal antihistamine for moderate to severe non-allergic rhinitis that is resistant to pharmacologic monotherapy.

Strength of recommendation: Conditional
Certainty of evidence: Low

Double blind, placebo controlled (DBPC) trials in AR have demonstrated that the combination of an intranasal corticosteroid and intranasal antihistamine is more effective at reducing symptoms of AR and has a faster onset of action than the individual components. 339 This has been demonstrated in five DBPC trials with a fixed combination of intranasal azelastine and fluticasone propionate in a single device (MP29-02, Dymista®), in patients with moderate to severe SAR, ages 12 and above 460-462 and one DBPC trial showed its superiority over placebo in children 6-11 years. 463 Its superior efficacy in reducing the PM 12h-reflective total nasal symptom score over IN fluticasone was also demonstrated over the whole range of a 12-months’ randomized, open-label trial in patients with chronic rhinitis (perennial AR and non-allergic AR), although no NAR-subgroup analysis was presented. 464 A 6-week randomized trial of 162 NAR patients demonstrated significantly greater (p<0.01) reduction in nasal obstruction score with the combination of an INCS and an INAH compared to monotherapy with an INCS. 465

However, as reviewed in the 2017 Rhinitis GRADE document, all these studies were designed to compare the use of combination therapy vs. monotherapy as initial treatment of SAR and not as add-on therapy. 339 The JTFPP recognizes that in clinical practice, in most cases, the combination will be used when monotherapy has failed to relieve symptoms in patients with SAR, PAR, and NAR in all ages for which the product has been approved. However, for PAR and NAR, the recommendations are based predominantly on expert opinion.

MP29-02 contains a combination of two active substances, fluticasone propionate and azelastine. Slightly higher fluticasone AUC0-12h and Cmax have been reported compared to those of commercially available intranasal fluticasone propionate. 466 Of note, are the safety data reported from the above mentioned 12-months’ trial, with MP29-02 1 spray per nostril bid, in which 8/404 patients were discontinued at six months, because of an adverse event (3 decreased serum cortisol, 3 cataract, 2 acne) versus 1/207 in the commercially available fluticasone group (cataract). 464, 467 Other additional combination devices, currently not FDA approved, including those that contain different intranasal corticosteroids and intranasal antihistamines, have been studied. 468-474 Several of these studies confirm additive benefit over intranasal monotherapies.

Intranasal corticosteroid with intranasal ipratropium for control of rhinorrhea
Consensus Based Statement #25: We suggest that for patients taking an intranasal corticosteroid who have persistent rhinorrhea, the clinician may consider the addition of intranasal ipratropium bromide. Strength of the recommendation: Conditional
Certainty of evidence: Moderate

In patients with rhinorrhea not fully responsive to INCS therapy, the addition of ipratropium bromide is beneficial. Intranasal ipratropium bromide plus intranasal beclomethasone was more effective than either active agent alone, in reducing the average severity and duration of rhinorrhea in allergic and non-allergic rhinitis. 475

Intranasal corticosteroid with intranasal decongestant

Consensus Based Statement #26: We suggest that patients with persistent nasal congestion unresponsive to an intranasal corticosteroid or to an intranasal corticosteroid/intranasal antihistamine combination be offered combination therapy with addition of an intranasal decongestant for up to 4 weeks.
Strength of the recommendation: Conditional
Certainty of evidence: Low

In PAR and SAR, concurrent administration of intranasal corticosteroids and intranasal decongestants provides greater reduction in nasal congestion symptoms and greater improvement in nasal volume than that of an intranasal decongestant alone. 407, 408 Further, the combination tended to reduce nasal congestion faster than the intranasal corticosteroid alone. When intranasal decongestant was given along with the intranasal steroid once a day for up to 2 weeks, the development of rhinitis medicamentosa, a concern with intranasal decongestant use as monotherapy, did not occur. 407, 408 In addition, in a small study where 19 healthy subjects received intranasal decongestant for 2 weeks followed by the addition of intranasal corticosteroid for 3 days, oxymetazoline-induced tachyphylaxis and rebound congestion were reversed by intranasal fluticasone. 476 In a 4-week, DBPC trial involving 50 patients with chronic rhinitis taking INCS and cetirizine with persistent nasal congestion, the addition of oxymetazoline provided significant reduction in nasal congestion scores compared to placebo without the development of rhinitis medicamentosa. 477 A post-hoc analysis demonstrated that the addition of oxymetazoline afforded significantly greater nasal congestion reduction in the AR compared to the NAR subgroup. 477 Whereas the combination of an intranasal corticosteroid and an intranasal antihistamine remains the preferred and most supported option in patients with AR with persistent symptoms after monotherapy (see above), it might be reasonable to consider adding an intranasal decongestant to an intranasal steroid for the first few days of therapy in patients with allergic rhinitis and significant nasal congestion. At this time, existing evidence is scant and is not sufficient to support the prolonged use of the above combination.

Oral antihistamine with oral decongestant

Consensus Based Statement #27: We suggest that for allergic rhinitis patients with nasal congestion uncontrolled with an oral antihistamine, the clinician consider the addition of pseudoephedrine, when tolerated. (See CBS #18)
Controlled studies demonstrate that combination of oral antihistamine and oral decongestant is more effective in reducing symptoms of AR, including nasal congestion, than the individual components, but adverse effects of oral decongestants are a concern. Given the evidence that this combination is effective, if this regimen is prescribed, the clinician should take into account the dose response relationship of the side effect profile for oral decongestants and titrate to the lowest effective dose. As indicated in Figures 2 and 3, pharmacologic options other than an oral antihistamine with an oral decongestant (e.g. intranasal corticosteroid or intranasal antihistamine) generally are preferred, but the selection to use an oral antihistamine with an oral decongestant may be made in a shared decision-making discussion. As presented in the Rhinitis 2008 PP, pseudoephedrine is far superior to other decongestants, however there are limited antihistamine-pseudoephedrine combinations, e.g., fexofenadine/pseudoephedrine. If a fixed combination is chosen, side effects such as insomnia should be taken into account. If side effects with the fixed combination are an issue for the patient, the dose should be adjusted, if possible, or the fixed combination stopped and either separate monotherapy products selected to allow for dose titration, or a different therapeutic class of rhinitis agents chosen, e.g., intranasal corticosteroids.

Intranasal decongestant with intranasal ipratropium
There is no published literature on the effect of combination intranasal decongestant with intranasal ipratropium for the treatment of AR and therefore no recommendation for or against this combination can be made. In one short-term study (<10 days), there was no rhinitis medicamentosa or rebound congestion noted with the combination; however, there was no clinically important differences in ciliary motility and mucociliary clearance observed.

Oral antihistamines with oral leukotriene receptor antagonists
Consensus Based Statement # 28: We suggest that for seasonal allergic rhinitis, the clinician not combine the oral leukotriene receptor antagonist montelukast with an oral antihistamine for symptoms not controlled with an oral antihistamine. (Also see CBS 7)
Strength of recommendation: Conditional
Certainty of evidence: Moderate

Some studies find the concomitant use of leukotriene receptor antagonist with various oral antihistamines provide additive benefit in reducing symptoms and improving quality of life in patients with SAR, while others have shown inconclusive or conflicting results, or no benefit over individual medications. One study showed prophylactic treatment with the combination of montelukast and cetirizine together to be more effective than cetirizine alone in preventing symptoms and reducing allergic inflammation.

Although some studies find that the concomitant administration of an oral leukotriene receptor antagonist and an oral antihistamine can have an additive effect, this approach is usually less
efficacious than administering intranasal corticosteroids as monotherapy. The decision to use this combination rather than an intranasal agent should be made following a shared decision-making discussion. As many as 40% of patients with allergic rhinitis have coexisting asthma. The combination of montelukast and a second-generation antihistamine may protect against seasonal decrease in some measures of lung function, e.g., FEF 25-75, in patients with allergic rhinitis. However, the combined mediator antagonism of montelukast with cetirizine is less effective than combined intranasal and inhaled corticosteroids in attenuating nasal and bronchial inflammatory markers.

Combination Therapies that have NOT been shown to be convincingly superior to Monotherapy

Oral antihistamine with intranasal corticosteroid

GRADE Recommendation (2017): We recommend that the clinician not prescribe, as initial treatment, a combination of an oral antihistamine and an intranasal steroid in preference to monotherapy with an intranasal steroid in patients 12 years of age and older with symptoms of seasonal allergic rhinitis.

Consensus Statement #30: We suggest that the clinician not prescribe the combination of an oral antihistamine and an intranasal corticosteroid in preference to monotherapy with an intranasal steroid in all patients with seasonal allergic rhinitis and perennial allergic rhinitis.

Oral leukotriene receptor antagonists with intranasal corticosteroids

Consensus Based Statement #31: We suggest against the addition of the oral leukotriene receptor antagonist montelukast to an intranasal corticosteroid for allergic rhinitis, due to the lack of adequate evidence of improved efficacy and concerns for serious neuropsychiatric events from montelukast. (Also see CBS 7)
There is no strong evidence to support use of oral LTRA in addition to an intranasal corticosteroid. One study found no further benefit when an oral LTRA was added to an intranasal corticosteroid for the treatment of allergic rhinitis.492 One study found that montelukast add-on therapy to fluticasone nasal spray is more efficacious in controlling nighttime symptoms but similar in efficacy in controlling total symptom score.493 With very weak evidence, suggesting on one hand a possible benefit and on the other no benefit, but with concerns for serious neuropsychiatric events from montelukast, the JTFPP suggests against the use of this combination.

Allergic rhinitis pharmacologic treatment algorithms

In making decisions about selection of therapies for AR, we recommend that a clinician use guidance from an algorithm (See Figures 2 and 3) that is based upon multiple considerations including relative effectiveness, onset of action, potential for adverse effects, patient preference, cost to patient, symptom severity, and whether a patient has intermittent or persistent allergic rhinitis. The step-wise progression and decision tree is based largely on expert opinion, and cannot account for variable patient adherence in real life experience. This algorithm was developed for clinical guidance and should be viewed as suggested, conditional recommendations. The certainty of the evidence for the various decision steps in the algorithm varies from being very low to high, based upon the evidence for each drug or combination of drugs. The algorithm also considers onset of action of the various agents. The following section reviews data about onset of action of agents used for the treatment of allergic rhinitis. See discussion for each drug class or combination of drug classes for detailed review of data considered.
Allergic Rhinitis pharmacotherapy: Onset of action

Onset of action for symptom relief may be an important consideration in selection of treatment (See Table 8). There are relatively few head to head trials that directly compare time to onset of symptom relief from different agents. Typically, data from studies using environmental exposure units find quicker onset of action than outdoor park challenges, and traditional field studies do not measure symptom relief until 12 hours or more after commencing treatment. One cannot rely upon one clinical trial to give firm estimates of action onset of a specific pharmacological class or product. For patients with mild intermittent symptoms and minimal congestion, oral antihistamines provide symptom relief in 1-2 hours. When combined with oral pseudoephedrine, nasal congestion can be improved within 30 minutes. Topical decongestants such as oxymetazoline improve nasal airflow in under 10 minutes but possible rebound congestion limits long term use of these medications (this may be mitigated with concomitant use of a nasal steroid). Intranasal antihistamines (INAH) offer a quicker onset of action within 15 minutes along with greater overall efficacy, and intranasal ipratropium provides relief of rhinorrhea within 15 minutes. Intranasal corticosteroids give the greatest long-term relief for persistent symptoms with peak results taking up to 2 weeks, but significant improvement can be seen within 2-4 hours. When an INAH is added to an INCS, the onset of action is reduced to only 5 minutes offering almost immediate symptom relief along with long term control. Montelukast offers similar symptom relief to some oral antihistamines, but with a much slower onset of action making as needed use unhelpful. While cromolyn may be helpful for pre-exposure prophylaxis, treatment of current symptoms requires 1-2 weeks of 3-4 times daily treatment to see a benefit.

The time to peak symptom relief is even more difficult to discern from the literature. No studies are designed to look at time to maximal symptom relief and few studies even note when maximal relief is achieved. In addition, the studies reviewed for maximal efficacy are a mix of seasonal and perennial studies with different allergens and pollen counts and thus cannot be compared. The only conclusions that can be drawn are that INCS take at least 2 weeks of regular use to achieve maximal benefit, while oral antihistamines are maximally effective within 1-8 days. INAH achieve maximal results in 1 day in one study, but incremental gains were seen up to 4 weeks in another. Montelukast probably achieves peak effectiveness by the second week.

The time for onset of action and maximum effect as described in Table 8 are based on representative studies in SAR with pollen as the allergen, using symptom scores except for ipratropium, which used methacholine and the amount of nasal secretions, and oxymetazoline which used maximal nasal airflow in patients with pre-existing turbinate hypertrophy.

Pharmacotherapy for non-allergic rhinitis (NAR)

Consensus Based Statement # 32: We suggest that the clinician offer an intranasal corticosteroid as one first line therapy for non-allergic rhinitis.

Strength of the recommendation: Conditional
Certainty of evidence: Low to Moderate

Consensus Based Statement # 33: We suggest that the clinician offer an intranasal antihistamine as one first line therapy for non-allergic rhinitis.

Strength of the recommendation: Conditional

Certainty of evidence: Very low

The effectiveness of INCS has been reported in studies that have involved a large number of patients with NAR (1), especially those with NARES.(354-356) Intranasal corticosteroids have also been reported to be effective in the treatment of VMR.(1, 354, 357) While INCS are generally recommended for treatment of NAR, their efficacy for some subsets of NAR is uncertain, and is less than that which is achieved for AR. There is conflicting clinical research on whether inflammatory NAR responds better to INCS than does non-inflammatory NAR. A 2019 Cochrane review concluded that it is unclear whether intranasal corticosteroids reduce patient-reported disease severity in non-allergic rhinitis patients compared with placebo.

Topical intranasal antihistamines, azelastine and olopatadine, have been shown to reduce symptoms of NAR. Two 3 week multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trials (n=223 study 1; n=203 study 2) conducted in patients with VMR revealed numerical improvements in total vasomotor rhinitis symptom score (TVRSS) for azelastine compared to placebo from baseline (mean numerical change 1.54 vs. 0.84, p=.002 in study 1; mean numerical change 1.54 vs. 0.88, p=.005 in study 2). There were no statistical differences in study dropout rate for azelastine versus placebo in either study and the only difference in adverse events between azelastine versus placebo was bitter taste (19% vs.2%). In a randomized, double-blind, parallel-group, multicenter comparison study of olopatadine versus azelastine administered over 14 days in subjects ≥12 years of age with chronic VMR, both medications were found to equally reduce symptoms. The main adverse event was taste disturbance in approximately 10% with azelastine and 5% with olopatadine. In this study the authors acknowledge a limitation of this study was that subjects could have previously been on either study drug and enrolled after a washout period of seven days. In a study that measured substance P after administering nasal lavage hypertonic saline before and after treatment with azelastine versus placebo, azelastine was able to reduce substance P secretion to a statistically significant degree (p<.05). Another short-term non-placebo controlled study compared intranasal azelastine to intranasal triamcinolone in NAR and AR and found both to be equally effective in both groups at improving nasal symptom scores, nasal peak inspiratory flow rate, Epworth sleepiness scale and quality of life.

Less used and non-FDA approved treatments include topically applied capsaicin [see separate section], botulinum toxin A injected or topically applied, and vidian neurectomy for severe refractory cases of VMR. (1) Botulinum toxin A applied on the nasal mucosa or injected submucosally has been demonstrated to be effective in reducing hypersecretions and nasal congestion in VMR but to a lesser degree than ipratropium bromide. In severe, refractory cases of VMR, vidian neurectomy has been used, although there has been concern
regarding potential adverse events. In a recent systemic review, endoscopic vidian neurectomy
compared with the traditional transantral approach was not associated with any long-term
sequelae and provided improvement in rhinorrhea and nasal obstruction for several years
following surgery. 534

Non-allergic rhinitis pharmacologic treatment algorithm
As with AR, we recommend that a clinician use guidance from an algorithm (See Figures 4 and
5) that is based upon multiple considerations including relative effectiveness, onset of action,
potential for adverse effects, patient preference, symptom severity, and whether a patient has
intermittent or persistent rhinitis. The step-wise progression and decision tree is based largely
on expert opinion and cannot account for variable patient adherence in real life experience.
Compared to the evidence for making treatment decisions in AR, the evidence for making
recommendations for treatment of NAR is generally more limited, and there are fewer
treatment options.

Allergen immunotherapy and Allergic Rhinitis

Consensus Based Statement # 34: We suggest that allergen immunotherapy (subcutaneous or
sublingual tablets) be offered through shared decision-making to patients with moderate to
severe allergic rhinitis who 1) are not controlled with allergen avoidance and/or
pharmacotherapy or 2) choose immunotherapy as the preferred method of treatment, e.g.,
due to the desire to avoid the adverse effects, costs, or long-term use of pharmacotherapy,
and/or 3) desire the potential benefit of immunotherapy to prevent or reduce the severity of
comorbid conditions, such as asthma.
Strength of recommendation: Conditional
Certainty of evidence: Moderate

Consensus Based Statement # 35: We suggest that allergen immunotherapy (subcutaneous or
sublingual tablets) be considered for patients with controlled mild and moderate asthma with
coeexisting allergic rhinitis.
Strength of recommendation: Conditional
Certainty of evidence: Moderate

The basis for the preceding consensus statements about allergen immunotherapy (AIT) is
discussed below. Much more detailed discussion and additional recommendations about AIT
are found in recent JTFPP parameter documents on AIT. (See allergyparameters.org).

Allergen immunotherapy (AIT) is effective for the treatment of AR. 535-537 AIT should be
considered for patients with allergic rhinitis who have specific IgE antibodies to clinically
relevant allergens, and its use depends on the degree to which symptoms can be reduced by
avoidance and medication, the amount and type of medication required to control symptoms,
the adverse effects of medications, and patient preference. 535-537 A high-quality meta-analysis
from 2017 reported doubtful evidence that AIT can prevent the development of new allergen
sensitizations (as this could not be confirmed in the sensitivity analysis); 538 however, its short-
term potential to reduce the risk for the development of asthma in patients with AR, could be confirmed. 538

A previous 2013 AHRQ meta-analysis reviewed 74 references and concluded that subcutaneous immunotherapy (SCIT) is effective for reducing symptoms of AR and allergic conjunctivitis in adults (High strength of evidence). 539 Reviewing 60 studies, the authors concluded that sublingual immunotherapy (SLIT) reduces the symptoms of allergic rhinoconjunctivitis in adults (Moderate strength of evidence). 539 The 8 studies that indirectly compared SCIT to SLIT in adults showed that SCIT is superior to SLIT for symptom reduction in allergic rhinoconjunctivitis (Low strength of evidence). 539 A more recent head-to-head double-dummy, double blind RCT with grass pollen SCIT versus tablet SLIT showed minor numeric superiority of SCIT over SLIT (not significant). 540 In pediatric studies SCIT was effective in reducing rhinitis symptoms (Moderate strength of evidence) and conjunctivitis symptoms (Low strength of evidence) and SLIT reduced rhinoconjunctivitis symptoms. (Moderate strength of evidence). 539 The overall body of evidence showed that both SCIT and SLIT were safe and effective treatments for AR. (Moderate to High strength of evidence.) 539

Currently in the US, there are four tablet preparations for SLIT: a single pollen grass tablet, a 5-grass pollen tablet, a ragweed tablet, and a dust mite tablet. Several meta-analyses conclude that SLIT is effective in the treatment of AR and allergic asthma in adults and children and SLIT has been included in the Global Initiative for Asthma (GINA) treatment algorithm since 2017. Adverse reactions to SLIT, primarily local oral mucosal, are very common, systemic reactions are rare, and there have been no reported fatalities due to SLIT. 541

The following text is a quotation from the 2017 JTF practice parameter on SLIT: “Although alternative regimens and preparations for SLIT have been proposed and may be used off-label in the United States (e.g., use of liquid SCIT extract for sublingual delivery or use of specific sublingual drops or other sublingual tablets), these products and formulations do not have FDA approval at present and have not been systematically studied in a rigorous manner in US populations. Use of such products or formulations as prescribed SLIT therapy is currently off-label, at a practitioner’s discretion, and is without recommendation for any current particular indication in the US populations. Therefore, off-label use of aqueous SLIT extracts or any other non-FDA approved SLIT formulation is not endorsed.” 541

No head-to-head trials of SLIT-T and SLIT-D have been conducted and variations among the trials in scoring of symptoms and medication use preclude direct comparisons of treatment effects. 542 Four meta-analyses have provided indirect comparisons. 535, 543-545 The symptom treatment effect was greater for SLIT-T vs SLIT-D in all four of the meta-analysis comparisons. The medication use treatment effect of SLIT-T was greater than SLIT-D in two of the comparisons, was less than SLIT-D in one comparison, and was comparable to SLIT-D in the fourth comparison.

A systematic review and meta-analysis of the economic impact of SCIT and SLIT in adults and children with SAR was undertaken by the National Institute for Health Research in the United Kingdom. Economic modelling suggested that, when compared with symptomatic treatment,
both SCIT and SLIT may become cost-effective at a threshold of $28,000-42,000 /quality-adjusted life-year (QALY) after 5-6 years of treatment. In the US, using a Florida Medicaid claims analysis, SCIT in children and adults conferred significant health care cost savings within 3 months of initiating treatment and a 38% lower 18-month mean total health care costs.

A systematic review of the safety of SCIT (45/74 SCIT studies reported safety data) reviewed that the most common adverse effects, reported by 5-58% of patients were mild, local reactions. Pooled data, using a variety of grading systems, found that general symptoms (such as headache, fatigue, arthritis) were reported by 44% of patients and that respiratory-related systemic reactions were reported following 15% of the injections, a reaction rate far higher than that experienced by most US allergists. The same study reported thirteen anaphylactic reactions, but no deaths. A recent survey of AAAAI and ACAAI members, using the World Allergy Organization’s classification system for systemic reactions (Grade 1-4) found an overall stable systemic reaction rate of 0.1% (Grade 1-4), 1/million allergy injections Grade 4 (most severe) reactions, and one fatality/23.3 million allergy injections.

There is insufficient evidence to determine the efficacy or safety of SCIT in select subpopulations, e.g., the elderly, pregnant women, racial and ethnic minorities, inner-city residents, rural residents, in patients with immunodeficiency and autoimmune disorders, and individuals with severe asthma. However, consensus by experts is that there is no absolute lower or upper age limit for initiation of AIT, that AIT can be continued but generally not be initiated in pregnancy, and that SCIT can be considered in patients with immunodeficiency and autoimmune disorders. Certified allergists’ experience in large groups of such patients has been reported. Limited evidence suggests that SCIT may be more beneficial in patients with mild asthma than in those with severe asthma.

In general, the clinical indications for AIT for AR and asthma are similar for adults and children. Studies of children receiving AIT have demonstrated significant improvement in symptom control for asthma and AR and a reduction in airway responsiveness to cat and house dust mite allergens and reduction in pharmacy, outpatient, and total health care costs. Discordant data about a decrease in the risk of developing asthma and new sensitizations has already been commented on above.

When clinically indicated, the decision to initiate AIT depends upon a number of factors, including but not limited to patient’s preference/acceptability, adherence, medication requirements, response to avoidance measures, and the adverse effects of medications. The risks and benefits of administration of AIT with patients who are concurrently taking β-adrenergic blocking agents and ACE inhibitors and/or have serious underlying medical conditions needs to be assessed. SCIT should be administered in a setting where procedures that can reduce the risk of anaphylaxis are in place and where the prompt recognition and treatment of anaphylaxis is ensured. The first dose of SLIT is administered in a clinical setting under medical supervision but is, thereafter, administered by the patient at home. Clinical and physiological improvement can be demonstrated shortly after the patient reaches a maintenance dose.
Patients should be evaluated at least every 12 months while receiving AIT. While many patients experience sustained clinical remission of their allergic disease after discontinuing AIT, others may relapse. A decision about continuation of effective AIT should generally be made after the initial period of 3 to 5 years of treatment. At this point, for an individual patient, the decision to continue or discontinue treatment should be based upon the severity of disease, benefits sustained from treatment, and convenience of treatment.

Alternative medicine therapies

There is a body of literature reporting on the use of alternative medicine in AR. While alternative trials show promise as other optional therapies for AR, they suffer from many limitations. These include: the lack of standardized acupuncture protocols, lack of standardized outcome evaluations, methodological deficiencies, and small trial numbers. These limitations suggest that these positive outcomes should be interpreted with caution and that further research is needed before recommending alternative therapies for AR.

Acupuncture

Consensus Based Statement #36: We cannot make a recommendation for or against the use of acupuncture for the treatment of allergic rhinitis.

Strength of Recommendation: N/A

Certainty of Evidence: Ungraded due to lack of adequate studies

Developed in China 5000 years ago, acupuncture is one of the oldest medical interventions, yet little is known about its mechanism of action. Researchers have postulated alterations in immune or nervous system function with release of endorphins and changes in inflammatory and regulatory cells and their cytokine profiles, but none have been convincingly demonstrated. In a 2009 systematic review, acupuncture was found to be effective for treating seasonal allergic rhinitis based on symptom scores in only 1 of 4 studies when compared to a sham acupuncture. In another 4 studies on PAR, 2 studies showed improvements on symptom scores and a meta-analysis of the studies showed superiority over sham procedures. The authors concluded the evidence for acupuncture is mixed and larger sample size studies are needed.

A systematic review of acupuncture for AR included related publications in both English and Chinese languages and identified 13 papers (of 174) that met inclusion criteria. The studies involved 2365 participants with both SAR and PAR. The control groups included sham or no acupuncture and outcome measures included nasal symptom scores, relief medication scores, and quality of life measures. Compared to control, acupuncture led to significant reductions in nasal symptoms, intake of relief medications, and specific serum IgE levels. There was a trend in favor of active therapy in ameliorating quality of life measures. Another systematic review evaluated AHP in both English and Chinese literature and identified 20 trials (out of 1460) that met inclusion criteria and involved 2438 participants with allergic rhinitis where AHP was compared to placebo or western medicine. In general, the analysis showed that AHP was superior to placebo and not different from western medicine in control of symptoms and quality of life.
A randomized controlled trial with 12 sessions of acupuncture over 4 weeks in Australian patients with SAR showed improvements in symptom scores and quality of life compared to sham acupuncture. An accompanying editorial questioned the clinical significance of these findings though, as only selected symptom scores of sneezing and itching were improved. In the largest and highest quality multicenter study, 422 birch and grass allergic patients were randomized to 12 real or sham acupuncture sessions over 8 weeks. There was an improvement in quality of life scores and antihistamine use, but these did not meet predefined levels for clinical significance. Finally, in the largest pediatric study to date, 72 Chinese children were randomized to twice weekly real or sham acupuncture for 8 weeks with an improvement in symptom scores but not medication use, IgE levels, or blood or nasal eosinophil levels.

In conclusion, the results of acupuncture for allergic rhinitis are mixed, at best modest, and of uncertain clinical importance. However, it is very safe, with no serious adverse results reported in any studies.

Herbal medications

Consensus Based Statement #37: We cannot make a recommendation for or against the use of specific herbal products for the treatment of allergic rhinitis.

Strength of Recommendation: N/A

Certainty of Evidence: Ungraded due to lack of adequate studies

One alternative medical therapy is Chinese herbal medicine (CHM), which has been used for centuries to treat nasal symptoms related to allergic conditions. Studies can be hard to interpret as they use different products and methodologies, and many are industry funded. A review of one such CHM, Yu ping feng san, identified 22 randomized controlled trials (out of 1244 records) with 2309 participants with AR. Control groups included placebo, pharmacotherapy, and the combination of CHM and pharmacotherapy and treatment periods ranged from 2-8 weeks. Results were limited in the placebo control trials and suggested a trend for benefit from CHM in a very small number of studies. When CHM was compared to pharmacotherapy, there was no superiority of CHM to antihistamines or intranasal steroids. There was also a hint of superiority of CHM when used in combination with pharmacotherapy compared to pharmacotherapy alone. Reported adverse events were mild and transient.

Another review analyzed CHM in PAR and identified 7 randomized controlled trials (out of 266 studies) including 533 patients treated between 2 weeks and 3 months. Compared to placebo, CHM significantly reduced nasal symptoms with a moderate side effect profile which lasted a short time.

A 2007 systematic review examined 16 randomized controlled trials with 10 different products and found evidence that *Petasites hybridus* (butterbur) improves symptoms and quality of life comparably with a non-sedating antihistamine. A proposed mechanism of action for *Petasites hybridus* (butterbur) is inhibition of the synthesis of cysteinyl leukotrienes by an ingredient, petasin 1, but there is no evidence for the mechanisms of possible action for other proposed herbal remedies. Studies with Aller-7, a mixture of 7 Indian plants suggested
improvement in some symptoms, but this was inconsistent across studies and contradicted in other studies. Studies of 3 Chinese herbal preparations showed some positive results in symptom scores; however, in one study only sneezing was significant. Furthermore, another study reported that it required 5 weeks of herbal treatment to reach statistical significance. The authors state there is moderately strong evidence to support the use of butterbur but that for Chinese herbal products independent replication is necessary. More recently, a 2012 meta-analysis of 7 trials showed an improvement in symptom scores with traditional Chinese herbal medicine, but in a 2018 meta-analysis of 11 trials there was improvement in quality of life, but not symptom scores.

The 2012 National Health Interview Survey showed 32.2% of US adults used complementary health approaches, including herbal medicines, in the previous year. Physicians need to question patients on their use of these products as they can have toxicity and drug-herb interactions. The National Institute of Health has a webpage devoted to butterbur stating that raw, unprocessed butterbur plant contains pyrrolizidine alkaloids (PA) which can cause liver injury, recommending that only products certified “PA free” should be used. There is potential for allergic reactions to butterbur in patients sensitized to ragweed, chrysanthemums, marigolds, and daisies. While butterbur has the most promising data, more studies are needed to demonstrate the efficacy and safety of herbal medicines before we can endorse them.

Subpopulations with rhinitis

Pediatric patients and rhinitis

Rhinitis in children shares most of the pathophysiologic, clinical, diagnostic, and therapeutic characteristics observed in adults. The most frequent comorbidities of allergic rhinitis in children are allergic conjunctivitis, asthma, and atopic dermatitis. Allergic rhinitis is unusual below 2 years of age. Infectious rhinitis is discussed in the earlier section on that topic. Non-allergic, noninfectious rhinitis in children generally presents with chronic nasal symptoms. In addition to more common symptoms and signs of rhinitis such as nasal obstruction, rhinorrhea (anterior or posterior), sneezing and itching, children with rhinitis may present with snorting, throat clearing, cough, gaping mouth, eye rubbing and dark circles under the eyes. Physical exam findings are further reviewed in Table 6. As discussed in the section on Differential Diagnosis, in infants and young children, nasal congestion or obstruction can result from structural problems, such as cleft palate and adenoidal hypertrophy, or from functional processes, such as laryngopharyngeal reflux. Chronic mucopurulent drainage may suggest infectious rhinosinusitis. Purulent drainage, particularly if unilateral, bloody or persistent, may result from an intranasal foreign body. The so called “allergic march” is a progressive natural history of atopic disease that may begin in infancy and early childhood with atopic dermatitis and food allergy, followed by allergic rhinitis and atopic asthma in older childhood and adolescence.

The therapeutic approach to treating children with rhinitis is similar to that of adults, and includes allergen avoidance, AIT in appropriate cases (see CBS #34 and 35) for allergic rhinitis
and pharmacotherapy. Most pharmacologic treatments for allergic rhinitis are approved for children down to age 5 years, and many down to age 2 years or even younger. Special care must be given to dosage adjustment, adverse effects, and long-term safety. Controlled trials or real-world experience that have examined the comparative effectiveness, acceptance and adherence of medication options are more limited in children than in adults. That said, there are data that adherence to nasal spray use may be a greater issue in younger children. Historically there has been a shift in guidelines from recommending that oral antihistamines generally should be the first line agents for treatment of AR in children, to a broader approach that positions other agents including intranasal corticosteroids as first line considerations in shared decision-making with patients and families. Further discussion of considerations in children for different medication options are discussed within the CBS discussion for each respective drug class.

Elderly patients and rhinitis

Rhinitis in the elderly may be caused by the same types and subtypes of rhinitis common in other age groups. It occurs in up to 30% of the elderly, with >40% of these patients rating their rhinitis as moderate to severe, and almost 70% experiencing ocular symptoms. Allergic rhinitis is the most common type of rhinitis in the elderly but is less frequent than its incidence in younger age groups. In addition to allergic rhinitis, because of the concomitant use of multiple medications in the elderly, drug induced rhinitis is not infrequent. Alpha-1 adrenergic antagonists used for benign prostatic hyperplasia, ACE-inhibitors, possibly beta-adrenergic inhibitors and phosphodiesterase inhibitors can induce symptoms of rhinitis. (See earlier section on Drug induced rhinitis.)

Physiologic changes due to aging result in alterations in neural, histologic, mucosal, and olfactory status which have direct impact on the functioning of the nose. While the mechanism for the clear rhinorrhea reported to be the major rhinitis symptom in over 70% of this older population is not fully understood, there appears to be an imbalance of the sympathetic and parasympathetic tone, resulting in cholinergic hyperreactivity and excessive rhinorrhea. On the other hand, aging is also associated with reduced body water content and less effective nasal mucociliary clearance, leading, at times, to thicker mucous secretions, increased postnasal drip, and potentially, to increased respiratory infections. Structural changes due to aging can also reduce nasal cartilage elasticity and tip support which can further interfere with nasal airflow. Age related reduced blood flow to the nasal mucosa, basement membrane thickening, and epithelial atrophy have also been described. Through a combination of these structural and physiological changes, the elderly are more susceptible to nasal dryness, intranasal crusting, epistaxis, ulceration and atrophy of the nasal mucosa. Therapy for the elderly presenting with hyperactive cholinergic symptoms has not been well studied; however, because of the mechanism of action, intranasal ipratropium seems to be a logical intervention. Second generation oral antihistamines, intranasal antihistamines, leukotriene inhibitors, and intranasal corticosteroids are effective and well tolerated in the elderly when used for an appropriate indication, but controlled data comparing efficacy in this population are lacking. Sedating antihistamines, secondary to their systemic anticholinergic
effects, should be avoided in the elderly due to the risk of urinary retention, constipation, delirium and ocular pressure changes. As noted below under the “Oral Antihistamines” section, a 2015 U.S. prospective population-based cohort study suggested a link between higher cumulative use of agents with stronger anticholinergic effects (including sedating oral antihistamines) and the risk of developing dementia.

Rhinitis in Pregnancy

In summary, since the 2008 Rhinitis updated practice parameter publication, there is interval information available that raises new safety concerns about use during pregnancy of intranasal triamcinolone and intranasal decongestants and additional evidence that supports and extends our previous recommendation to avoid oral decongestants. However, there is additional information that supports safety in pregnancy of most other common medications used for rhinitis.

FDA pregnancy classification

Starting in June 2015, the FDA replaced its old pregnancy (A, B, C, X) classification for newly approved medications with a more narrative discussion in Product Information for risk summary, clinical considerations, and data headers under the pregnancy subsection. Medications approved after June 2001 will be gradually phased in. Most allergic rhinitis medications were approved prior to this and will retain the old A through X classification. Unfortunately, there is still little high-quality evidence from prospective randomized trials supporting the safe use of pharmacologic agents in pregnancy, but we do have some additional information from cohort studies and clinical reviews since our 2008 JTFPP Rhinitis Update.

Intranasal corticosteroids

As stated in the 2008 JTFPP Rhinitis Update, budesonide carries the old B FDA classification based upon the large Swedish birth registries which showed its safety. Other intranasal steroids still have the old C classification but there is new data supporting the safety of mometasone and fluticasone during pregnancy. Although most intranasal corticosteroids are generally considered safe during pregnancy, an exception is triamcinolone, which was associated with a higher rate of congenital respiratory defects in a large Canadian prospective cohort study, although a chance finding cannot be ruled out.

Intranasal antihistamines

There is little data on the safety of intranasal antihistamines in pregnancy.

Nasal saline

A randomized study of pregnant women with AR demonstrated that nasal saline lavage is safe and effective, with significant reduction in rhinitis symptom score, daily antihistamine use, and nasal resistance. Nasal saline therefore is a good first line option.

Oral antihistamines

There is further evidence of the fetal safety of antihistamines and as a whole, oral antihistamines still appear to be safe for use in pregnancy. Cetirizine was not associated with
increase rate of major malformations or increase teratogenic risk. A study using the UCB Pharma Patient Safety Database up to February 2015 reaffirmed the safety of cetirizine in pregnancy. A 2013 study using data from a multicenter case-control surveillance program of birth defects in North America did not support previously posited associations between antihistamines, notably diphenhydramine, loratadine, and chlorpheniramine, and major congenital anomalies. Loratadine does not appear to increase the risk of hypospadias in male offspring. A 2014 systematic review found the most safety data for loratadine, including no evidence of increased risk of hypospadias.

Oral and intranasal decongestants

Oral decongestants should be avoided because of the risk for gastroschisis. The Sloan Birth Defects Study confirmed an association between oral pseudoephedrine and gastroschisis. This same review also found an association between topical decongestants such as oxymetazoline, when used in the first trimester, with gastroschisis and pyloric stenosis as well as second trimester renal collecting system anomalies. In addition, an association between first-trimester exposure to phenylephrine, an oral decongestant, and endocardial cushion defects was described. Epidemiologic studies have identified increased risk of birth defects involving the heart, eyes, ears, gut, abdominal wall, and feet when oral decongestants have been used during the first trimester of pregnancy. However, the number of reported cases is very small, considering the fact that up to 7.8% of pregnant women report using oral decongestants. There has been described a possible association of gastroschisis with the use of both pseudoephedrine (RR 2.1-3.2) and phenylpropanolamine (RR 10.0) during the first trimester of pregnancy. Pseudoephedrine use in the first trimester of pregnancy has also been associated with limb reduction defects. Phenylephrine has also been associated with endocardial cushion defects (OR 8.0), ear defects (OR 7.8), and pyloric stenosis (OR 3.2). However, a Swedish prospective study looked at the use of these two decongestants during early and late pregnancy in 2474 and 1771 women, respectively, and no teratogenic effects were reported.

The adverse effects of oral decongestants taken during the second and third trimesters appear to be much less compared to early pregnancy, but caution should be used throughout pregnancy and prolonged use avoided.

Based on the low or variable benefit of using decongestants during pregnancy and the potential catastrophic harm of having a birth defect, the workgroup and JTFPP are making a strong recommendation against their use during the first trimester of pregnancy, despite the lack of a strong certainty of the evidence. The JTFPP is not make a recommendation for or against their use during the 2nd and 3rd trimester of pregnancy reflecting the lack of studies reporting catastrophic harm but the remaining low magnitude of benefit for their use. The clinician should involve shared decision-making with each patient when considering the use of oral decongestants during pregnancy.
Leukotriene receptor antagonists

Montelukast carries the old B FDA pregnancy classification and has reassuring observational data mostly from asthma studies. Since the 2008 JTFPP Rhinitis Update was published, a large Danish observational study from 1998 to 2009 found no increased risk of congenital malformations with montelukast. There was, however, an association with lower birth weight and gestational age in children and increased preeclampsia and gestational diabetes in mothers using montelukast. This may be explained by increased asthma severity in the montelukast group. Other human studies have shown montelukast and other leukotriene receptor antagonists (e.g. zafirlukast) are not associated with an increased rate of major malformations in offspring.

Allergen immunotherapy

As previously stated, subcutaneous immunotherapy should not be started in pregnancy, but may be continued. While no recommendation on sublingual immunotherapy can be made yet, there is one prospective observational study in which 185 pregnant Indian patients were treated with SLIT, (newly initiated in 24 and continued treatment in 161) with no increase in birth defects seen in 6 years of follow-up.

150. Wild DC, Philpott CM, Wolstenholme CR, Murty GE. Does hormone replacement therapy in post-menopausal women have any effect upon nasal physiology? J Laryngol Otol. 2008;122(7):707-10.

260. Bousquet J, Bullinger M, Fayol C, Marquis P, Valentin B, Burtin B. Assessment of quality of life in patients with perennial allergic rhinitis with the French version of the SF-

301. Santos CB, Hanks C, McCann J, Lehman EB, Pratt E, Craig TJ. The role of montelukast on perennial allergic rhinitis and associated sleep disturbances and daytime somnolence. Allergy and asthma proceedings. 2008;29(2):140-5.

74

353. Fairchild CJ, Meltzer EO, Roland PS, Wells D, Drake M, Wall GM. Comprehensive report of the efficacy, safety, quality of life, and work impact of Olopatadine 0.6% and Olopatadine 0.4% treatment in patients with seasonal allergic rhinitis. Allergy and asthma proceedings. 2007;28(6):716-23.

354. Hampel FC, Jr., Ratner PH, Amar NJ, van Bavel JH, Mohar D, Fairchild CJ, et al. Improved quality of life among seasonal allergic rhinitis patients treated with olopatadine HCl nasal spray 0.4% and olopatadine HCl nasal spray 0.6% compared with vehicle placebo. Allergy and asthma proceedings. 2006;27(3):202-7.

358. Lieberman P, Meltzer EO, LaForce CF, Darter AL, Tort MJ. Two-week comparison study of olopatadine hydrochloride nasal spray 0.6% versus azelastine hydrochloride nasal spray 0.1% in patients with vasomotor rhinitis. Allergy and asthma proceedings. 2011;32(2):151-8.

418. Roberge RJ, Hirani KH, Rowland PL, 3rd, Berkeley R, Krenzelok EP.

504. Stubner P, Zieglmayer R, Horak F. A direct comparison of the efficacy of antihistamines in SAR and PAR: randomised, placebo-controlled studies with

88

548. Epstein TG, Liss GM, Murphy-Berends K, Bernstein DI. AAAAI/ACAAI surveillance study of subcutaneous immunotherapy, years 2008-2012: an update on

92

Table 1: What’s new or newly emphasized in Rhinitis 2020 (CBS: Consensus Based Statement)

- Four new algorithms based on a combination of evidence and expert opinion can guide the clinician in the treatment of intermittent and persistent allergic and non-allergic rhinitis.

- New tables assist in 1) making the differential diagnosis for rhinitis based upon patient history, and 2) the diagnosis and treatment for rhinitis associated conditions or conditions that mimic rhinitis.

- Cough is emphasized as a common symptom present in both allergic and non-allergic rhinitis.

- New information is presented about local allergic rhinitis, possibly present in up to 25% of rhinitis patients, and its response to both SCIT and SLIT, although more research is needed.

- We recommend that food allergy testing not be performed in the routine evaluation of possible allergic rhinitis. (CBS 4)

- We recommend that the oral leukotriene receptor antagonist montelukast should only be used for allergic rhinitis in patients who have an inadequate response or intolerance to alternative therapies. Serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in patients taking montelukast. (CBS 7)

- Either intranasal antihistamines (INAH) or intranasal corticosteroids (INCS) may be offered as first-line monotherapy for non-allergic rhinitis (NAR). (CBS 12, 32)

- Since the 2008 Rhinitis update, additional studies support the use of combination INCS and INAH in allergic and non-allergic rhinitis. (CBS 22, 23, 24)
• Oral decongestants should be avoided during the first trimester of pregnancy. (CBS 19)

• Additional information is presented as to why first-generation antihistamines should not be used in allergic rhinitis, especially on a chronic basis, due to potential sedation, performance impairment, poor sleep quality, anticholinergic-medicated symptoms, and increased risk of dementia. (CBS 6)

• We continue to suggest that the use of intranasal decongestants generally be limited to short-term use to prevent rebound congestion that may occur with longer use. However, in limited circumstances discussed in the document, patients on regimens that include an intranasal corticosteroid may be offered combination therapy with addition of an intranasal decongestant for up to 4 weeks. (CBS 16, 26)

• SCIT and SLIT-tablets are both effective for the treatment of allergic rhinitis and may help prevent and/or treat allergic asthma. (CBS 34)

• Neither acupuncture nor herbal medications have adequate studies to support a recommendation to use them in the treatment of allergic rhinitis. (CBS 36, 37)
Table 2. Grading the Strength of the Consensus Based Statements

<table>
<thead>
<tr>
<th>Consensus Based Statement (CBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Consensus Based Statement (CBS)</td>
</tr>
<tr>
<td>The workgroup and JTFPP are confident that the desirable effects of adherence to the statement outweigh the undesirable effects. This CBS may be appropriate to be used as a practice standard indicator. When making a strong CBS the wording is “We recommend” implying that the clinician “should” follow the recommendation.</td>
</tr>
<tr>
<td>The implications of a strong CBS are:</td>
</tr>
<tr>
<td>• For patients—most people in your situation would want the recommended course of action and only a small proportion would not; request discussion if the intervention is not offered.</td>
</tr>
<tr>
<td>• For clinicians—most patients should receive the recommended course of action.</td>
</tr>
<tr>
<td>• For policy makers—the recommendation can be adopted as a policy in most situations.</td>
</tr>
<tr>
<td>Conditional CBS</td>
</tr>
<tr>
<td>The workgroup and JTFPP reach a decision that the desirable effects of adherence to a CBS probably outweigh the undesirable effect. When making a conditional CBS, the wording is “We suggest” implying that the clinician “may” follow the recommendation.</td>
</tr>
<tr>
<td>The implications of a conditional CBS are:</td>
</tr>
<tr>
<td>• For patients—most people in your situation would want the recommended course of action, but many would not.</td>
</tr>
<tr>
<td>• For clinicians—you should recognize that different choices will be appropriate for different patients and that you must help each patient to arrive at a management decision consistent with her or his values and preferences. It is likely that shared-decision making will play a major role in arriving at the management decision.</td>
</tr>
<tr>
<td>• For policy makers—policy making will require substantial debate and involvement of many stakeholders.</td>
</tr>
</tbody>
</table>
Table 3. Grading the Certainty of Evidence for each Consensus Based Statement

<table>
<thead>
<tr>
<th>Certainty Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Further research is very unlikely to change our confidence in the estimate of effect. The recommendation is based on high quality evidence, e.g., multiple highly rated randomized controlled trials, systematic reviews and metaanalyses.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. The recommendation would likely be based upon somewhat limited evidence, e.g., reduced number or quality of randomized controlled trials, controlled trials without randomization.</td>
</tr>
<tr>
<td>Low</td>
<td>Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. The recommendation would likely be based upon very weak evidence, e.g., non-experimental studies, registries, comparative studies.</td>
</tr>
<tr>
<td>Very low</td>
<td>Any estimate of effect is very uncertain. The recommendation is based largely on very low quality studies and/or on expert opinion.</td>
</tr>
</tbody>
</table>

Consensus Based Statement without determination of certainty:
When there are either no published studies, or very limited and/or very weak evidence, a consensus statement without any category of certainty of evidence was developed. The degree of agreement by all JTFPP and workgroup members is indicated, with voting details provided if there were dissenting votes.
<table>
<thead>
<tr>
<th>#</th>
<th>Consensus Based Statement (CBS) or Grading of Recommendations, Assessment, Development and Evaluation (GRADE) recommendation</th>
<th>Strength of Recommendation</th>
<th>Certainty of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CBS: We recommend that the clinician complete a detailed history and a physical examination in a patient presenting with symptoms of rhinitis.</td>
<td>Strong</td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>CBS: We recommend that for patients presenting with rhinitis symptoms, a review of all current medications should be completed to assess if drug-induced rhinitis may be present.</td>
<td>Strong</td>
<td>Ungraded</td>
</tr>
<tr>
<td>3</td>
<td>CBS: We recommend that aeroallergen skin prick testing or sIgE testing be completed to confirm the diagnosis of allergic rhinitis in a patient with a history consistent with allergic rhinitis.</td>
<td>Strong</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>CBS: We recommend that the clinician not perform food skin prick testing or sIgE for foods in their routine evaluation of a patient presenting with the signs and symptoms compatible with the diagnosis of allergic rhinitis</td>
<td>Strong</td>
<td>Ungraded</td>
</tr>
<tr>
<td>5</td>
<td>CBS: We suggest that the use of a validated instrument, e.g. scoring system, scale, or</td>
<td>Conditional</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>CBS: We recommend against prescribing a 1st generation antihistamine and in favor of a 2nd generation antihistamine when prescribing an oral antihistamine for the treatment of allergic rhinitis.</td>
<td>Strong</td>
<td>High</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>CBS: We suggest that the clinician not select the oral leukotriene receptor antagonist montelukast for the initial treatment of allergic rhinitis due to reduced efficacy when compared to other agents. Furthermore, serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in some patients taking montelukast. As advised by the FDA, montelukast should be used to treat allergic rhinitis only in patients who are not treated effectively with or cannot tolerate other alternative therapies.</td>
<td>Conditional</td>
<td>Very Low</td>
</tr>
<tr>
<td>8</td>
<td>CBS: We recommend that the clinician not select an oral leukotriene receptor antagonist for the treatment of non-allergic rhinitis.</td>
<td>Conditional</td>
<td>Ungraded</td>
</tr>
<tr>
<td></td>
<td>CBS: We suggest that for the treatment of very severe or intractable allergic rhinitis, the clinician may consider a short course (5-7 days) of oral corticosteroids.</td>
<td>Conditional</td>
<td>Very Low</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CBS: We suggest that for the treatment of very severe or intractable allergic rhinitis, the clinician not prescribe a depot parenteral corticosteroid for allergic rhinitis due to the potential risks of systemic and local corticosteroid side effects.</td>
<td>Conditional</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>CBS: We recommend that the clinician offer intranasal antihistamines as an initial treatment option for patients with seasonal allergic rhinitis.</td>
<td>Strong</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>CBS: We recommend that the clinician offer intranasal antihistamines as a first-line monotherapy option for patients with non-allergic rhinitis.</td>
<td>Strong</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>CBS: We recommend that the clinician offer intranasal antihistamines as a first-line option for patients with intermittent allergic rhinitis.</td>
<td>Conditional</td>
<td>Ungraded</td>
</tr>
<tr>
<td></td>
<td>CBS: We recommend that when choosing monotherapy for persistent allergic rhinitis, intranasal corticosteroids be the preferred medication.</td>
<td>Strong</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>GRADE: We recommend that for the initial treatment of moderate to severe seasonal</td>
<td>Strong</td>
<td>High</td>
</tr>
</tbody>
</table>
allergic rhinitis in patients 15 years of age and older, the clinician use an intranasal corticosteroid over an LTRA. (Also see CBS 7)

<table>
<thead>
<tr>
<th>CBS</th>
<th>Conditional</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>We suggest that the use of intranasal decongestants be short-term and used for intermittent or episodic therapy of nasal congestion. [However, see also CBS 26.]</td>
<td>Conditional</td>
</tr>
<tr>
<td>17</td>
<td>We suggest that in patients having severe mucosal edema which impairs the delivery of other intranasal agents, an intranasal decongestant be considered for up to 5 days of use.</td>
<td>Conditional</td>
</tr>
<tr>
<td>18</td>
<td>We suggest that oral decongestant agents be used with caution in older adults and children younger than 4 years old, and in patients of any age who have a history of cardiac arrhythmia, angina pectoris, cerebrovascular disease, uncontrolled hypertension, bladder outlet obstruction, glaucoma, hyperthyroidism, or Tourette syndrome.</td>
<td>Conditional</td>
</tr>
<tr>
<td>19</td>
<td>We recommend that oral decongestants be avoided during the first trimester of pregnancy.</td>
<td>Strong</td>
</tr>
<tr>
<td>20</td>
<td>We suggest that in patients with perennial allergic rhinitis and non-allergic rhinitis who have rhinorrhea as their</td>
<td>Conditional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>main nasal symptom be offered intranasal ipratropium.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>CBS: We suggest that intranasal cromolyn be offered as an option to be taken just prior to allergen exposure to reduce symptoms of allergic rhinitis from episodic allergen exposures.</td>
<td>Conditional</td>
</tr>
<tr>
<td>22</td>
<td>GRADE: We suggest that the clinician consider the combination of an intranasal corticosteroid and an intranasal antihistamine for the initial treatment of moderate to severe nasal symptoms of seasonal allergic rhinitis in patients age ≥12.</td>
<td>Conditional</td>
</tr>
<tr>
<td>23</td>
<td>CBS: We suggest that the clinician consider the combination of an intranasal corticosteroid and an intranasal antihistamine for moderate to severe seasonal allergic rhinitis and perennial allergic rhinitis that is resistant to pharmacologic monotherapy.*</td>
<td>Conditional</td>
</tr>
<tr>
<td>24</td>
<td>CBS: We suggest that the clinician consider the combination of an intranasal corticosteroid and an intranasal antihistamine for moderate to severe non-allergic rhinitis that is resistant to pharmacologic monotherapy.*</td>
<td>Conditional</td>
</tr>
<tr>
<td></td>
<td>Statement</td>
<td>Strength</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>25</td>
<td>CBS: We suggest that for patients taking an intranasal corticosteroid who have persistent rhinorrhea, the clinician may consider the addition of intranasal ipratropium.</td>
<td>Conditional</td>
</tr>
<tr>
<td>26</td>
<td>CBS: We suggest that patients with persistent nasal congestion unresponsive to an intranasal corticosteroid or to an intranasal corticosteroid/intranasal antihistamine combination be offered combination therapy with addition of an intranasal decongestant for up to 4 weeks.</td>
<td>Conditional</td>
</tr>
<tr>
<td>27</td>
<td>CBS: We suggest that for allergic rhinitis patients with nasal congestion uncontrolled with an oral antihistamine, the clinician consider the addition of pseudoephedrine, when tolerated. (See CBS 18)</td>
<td>Conditional</td>
</tr>
<tr>
<td>28</td>
<td>CBS: We suggest that for seasonal allergic rhinitis the clinician not combine the oral leukotriene receptor antagonist montelukast with an oral antihistamine for symptoms not controlled with an oral antihistamine. (See CBS 7)</td>
<td>Conditional</td>
</tr>
<tr>
<td>29</td>
<td>GRADE: We recommend that the clinician not prescribe, as initial treatment, a combination of an oral antihistamine and an intranasal steroid in preference to</td>
<td>Strong</td>
</tr>
<tr>
<td>CBS</td>
<td>Recommendation</td>
<td>Evidence Level</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>30</td>
<td>CBS: We suggest that the clinician not prescribe the combination of an oral antihistamine and an intranasal corticosteroid in preference to monotherapy with an intranasal steroid in all patients with seasonal allergic rhinitis and perennial allergic rhinitis.</td>
<td>Conditional, Very Low</td>
</tr>
<tr>
<td>31</td>
<td>CBS: We suggest against the addition of the oral leukotriene receptor antagonist montelukast to an intranasal corticosteroid for allergic rhinitis, due to the lack of adequate evidence of improved efficacy and concerns for serious neuropsychiatric events from montelukast. (See CBS 7)</td>
<td>Conditional, Very Low</td>
</tr>
<tr>
<td>32</td>
<td>CBS: We suggest that the clinician offer an intranasal corticosteroid as one first line therapy for non-allergic rhinitis.</td>
<td>Conditional, Low</td>
</tr>
<tr>
<td>33</td>
<td>CBS: We suggest that the clinician offer an intranasal antihistamine as one first line therapy for non-allergic rhinitis.</td>
<td>Conditional, Very Low</td>
</tr>
<tr>
<td>34</td>
<td>CBS: We suggest that allergen immunotherapy (subcutaneous or sublingual tablets) be offered through shared decision-making to</td>
<td>Conditional, Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>patients with moderate to severe allergic rhinitis who 1) are not controlled with allergen avoidance and/or pharmacotherapy or 2) choose immunotherapy as the preferred method of treatment, e.g., due to the desire to avoid the adverse effects, costs, or long-term use of pharmacotherapy, and/or 3) desire the potential benefit of immunotherapy to prevent or reduce the severity of co-morbid conditions, such as asthma.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>CBS: We suggest that allergen immunotherapy (subcutaneous or sublingual tablets) be considered for patients with controlled mild and moderate asthma with coexisting allergic rhinitis.</td>
<td>Conditional</td>
</tr>
<tr>
<td>36</td>
<td>CBS: We cannot make a recommendation for or against the use of acupuncture for the treatment of allergic rhinitis.</td>
<td>N/A</td>
</tr>
<tr>
<td>37</td>
<td>CBS: We cannot make a recommendation for or against the use of specific herbal products for the treatment of allergic rhinitis.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* “Resistant to pharmacologic monotherapy” assumes that the patient has been compliant and taken medication for adequate duration.
Table 5. Patient reported symptoms and likely diagnosis:

Note: This table is developed based predominantly on expert opinion

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Allergic rhinitis</th>
<th>Non-allergic rhinitis</th>
<th>Acute URI</th>
<th>Chronic rhinosinusitis without nasal polyps</th>
<th>Chronic rhinosinusitis with nasal polyps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinorrhea, sniffing</td>
<td>Very common, can be intermittent AR or persistent AR, most common symptom, clear watery</td>
<td>Common, but less than AR overall, but some subtypes have rhinorrhea as a major symptom</td>
<td>Common clear to purulent, watery to mucoid, associated with crust formation</td>
<td>Common, clear to mucoid</td>
<td>Common, clear to mucoid</td>
</tr>
<tr>
<td>Sneezing</td>
<td>Very common, intermittent and persistent AR, almost universal</td>
<td>Common, intermittent, less common than in AR, rarely persistent</td>
<td>Common</td>
<td>Very uncommon</td>
<td>Very uncommon</td>
</tr>
<tr>
<td>Hyposmia/anosmia</td>
<td>Occasional</td>
<td>Occasional</td>
<td>Common</td>
<td>Common</td>
<td>Very common</td>
</tr>
<tr>
<td>Nasal congestion/block ed nose, mouth breathing</td>
<td>Very common, persistent AR > intermittent AR</td>
<td>Very common, usually persistent</td>
<td>Common</td>
<td>Very common</td>
<td>Very common, chronic, almost universal</td>
</tr>
<tr>
<td>Mouth breathing</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
<td>Occasional</td>
<td>Common</td>
</tr>
<tr>
<td>Ocular pruritus, watery discharge, red eyes</td>
<td>Very common</td>
<td>Uncommon</td>
<td>Uncommon</td>
<td>Very uncommon</td>
<td>Very Uncommon</td>
</tr>
<tr>
<td>Post-nasal drip</td>
<td>Uncommon, persistent AR > intermittent AR</td>
<td>Very common</td>
<td>Common</td>
<td>Common</td>
<td>Occasional</td>
</tr>
<tr>
<td>Nasal/palate/ear itching</td>
<td>Common</td>
<td>Very uncommon</td>
<td>Very uncommon</td>
<td>Very uncommon</td>
<td>Very uncommon</td>
</tr>
<tr>
<td>Sore throat</td>
<td>Occasional, persistent > intermittent</td>
<td>Uncommon</td>
<td>Common</td>
<td>Occasional</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Constant clearing of throat</td>
<td>Uncommon</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Chronic cough</td>
<td>Common, persistent > intermittent</td>
<td>Common, unless post nasal drip treated (persistent > intermittent)</td>
<td>Common</td>
<td>Occasional</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Bleeding of nose</td>
<td>Very uncommon</td>
<td>Uncommon</td>
<td>Very uncommon</td>
<td>Very uncommon</td>
<td>Very uncommon</td>
</tr>
<tr>
<td>Facial or sinus pain/pressure</td>
<td>Very uncommon, persistent > intermittent</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Eustachian tube dysfunction</td>
<td>Occasional</td>
<td>Occasional</td>
<td>Common</td>
<td>Uncommon</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Uncommon, persistent AR > intermittent AR</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Snoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep disturbance/ sleep apnea</td>
<td>Common, persistent AR > intermittent AR</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Headache as part of symptomology</td>
<td>Occasional</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
<td>Common</td>
</tr>
</tbody>
</table>

Note: Frequency list as either 1) Very common, 2) common, 3) occasional, 4) uncommon, 5) very uncommon based upon expert evidence and opinion.
Table 6. Physical examination of patient presenting with symptoms compatible with rhinitis
(modified from Table V in 2008 Rhinitis Practice Parameter) 1

<table>
<thead>
<tr>
<th>Physical Examination Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital signs (including weight and height): Record on all patients.</td>
</tr>
<tr>
<td>General observations: facial pallor, elongated facies, preferred mouth breathing, and any evidence of systemic disease.</td>
</tr>
<tr>
<td>Eyes: Excessive lacrimation, erythema and swelling of the bulbar and/or palpebral conjunctiva, cobblestoning of the tarsal conjunctiva, swelling or dermatitis of outer eyelids, Dennie-Morgan lines, or venous stasis below the lower eyelids (“allergic shiners” which may occur in allergic or non-allergic rhinitis).</td>
</tr>
<tr>
<td>Nose: Reduced patency of nasal valve; alar collapse; transverse external crease; external deformity such as saddle nose (loss of nasal bridge that may occur from nasal trauma or systemic disorders such as relapsing polychondritis, granulomatosis with polyangitis, cocaine abuse, or some systemic infections); septal deviation or perforation, spurs, ulcers, perforation, prominent vessels, or excoriation; nasal turbinate hypertrophy, edema, pallor or erythema, and crusting; discharge (amount, color, consistency), and nasal polyps. The presence of tumors or foreign bodies should be noted.</td>
</tr>
<tr>
<td>Ears: Tympanic membrane dullness, erythema, retraction, perforation, reduced or increased mobility, and air-fluid levels.</td>
</tr>
<tr>
<td>Oropharynx: Halitosis, dental malocclusion or high arched palate associated with chronic mouth breathing, tonsillar or adenoidal hypertrophy, cobblestoning of the oropharyngeal wall, pharyngeal postnasal discharge, temporomandibular joint pain or clicking with occlusion, furrowing, coating, or ulceration of tongue or buccal mucosa.</td>
</tr>
<tr>
<td>Neck: Lymphadenopathy, or tenderness, thyroid enlargement or nodule.</td>
</tr>
<tr>
<td>Chest: Signs of asthma such as wheezing, or other abnormal or diminished sounds by auscultation.</td>
</tr>
<tr>
<td>Skin: Rashes, especially eczematous or urticarial (distribution and description), or dermatographism.</td>
</tr>
<tr>
<td>Other organ systems: When history or general observation indicate these should be included.</td>
</tr>
</tbody>
</table>

Note: This list is not intended to be totally inclusive. Elements of the examination that will assist in the differential diagnosis of rhinitis or that may indicate complications of treatment are included. Documentation of presence or absence of these elements should be considered.
Table 7. Diagnosis and treatment of rhinitis associated conditions or conditions that mimic rhinitis

Note: Table developed largely based upon expert opinion and intended to offer considerations for the clinician

<table>
<thead>
<tr>
<th>Condition</th>
<th>History that may differentiate from rhinitis</th>
<th>Physical Exam findings</th>
<th>Diagnostic studies</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic rhinosinusitis with nasal polyps (CRSwNP)</td>
<td>May have reduced sense of smell/taste; chronic congestion, nocturnal mouth breathing, NSAIDS induced respiratory symptoms</td>
<td>Mucosal polypoidal changes that will not shrink with topical decongestant, non-painful growths</td>
<td>Fiberoptic nasopharyngoscopy, sinus CT</td>
<td>Saline irrigation, consider short course oral corticosteroids, Intranasal corticosteroids (INCS), leukotriene receptor antagonists, surgery, Anti IL4/13 (dupilumab). Aspirin desensitization in Aspirin/NSAID Exacerbated Respiratory DiseaseResearch ongoing: Anti-IL5, IL-5 receptor antagonist, Anti-IgE</td>
</tr>
<tr>
<td>Chronic rhinosinusitis without nasal polyps (CRSsNP)</td>
<td>Facial pain/pressure, headache, mucopurulent discharge, decreased sense of smell, post-nasal drip, fatigue, poor sleep quality, depression</td>
<td>Mucopurulent discharge, facial tenderness, cobblestoning posterior pharyngeal wall</td>
<td>Fiberoptic nasopharyngoscopy, sinus CT, consider immune system evaluation</td>
<td>Evidence for treatment effectiveness may differ between CRSwNP and CRSsNP. Options include INCS, saline irrigation, chronic macrolide antibiotics (conflicting evidence), acute antibiotics for superimposed infection, surgery</td>
</tr>
<tr>
<td>Septal wall abnormalities, e.g., deviated septum, septal erosion, nasal</td>
<td>Severity worse unilateral side, previous surgery, trauma, history of abuse of cocaine (perforation)</td>
<td>Septal deviation noted, septal erosion and/or perforations, septal spurs, asymmetrical</td>
<td>Fiberoptic nasopharyngoscopy, sinus CT</td>
<td>Surgery, e.g., septoplasty or surgical correction of perforations, septal button (for septal perforation)</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Diagnosis/Procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>septal perforation</td>
<td>Nasal congestion as main symptom, poor response to medication</td>
<td>Improvement in breathing when performing the Cottle maneuver, i.e. pulling the patient’s cheek laterally to open the nasal valve angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal valve collapse</td>
<td>Nasal congestion as main symptom, poor response to medication</td>
<td>Fiberoptic nasopharyngoscopy and anterior rhinoscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbinate Hypertrophy:</td>
<td>Severe unilateral or bilateral obstruction. Hypertrophy can be primary or compensatory and often associated with congenital or traumatic septal deviation</td>
<td>Turbinate hypertrophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with or without concha bullosa</td>
<td></td>
<td>Fiberoptic nasopharyngoscopy, Sinus CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoidal hypertrophy</td>
<td>Child with recurrent ear infections and/or snoring, congestion as main or only symptom, possible sleep disturbance</td>
<td>Tympanogram, fiberoptic nasopharyngoscopy, lateral neck radiological studies, CT scan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign body</td>
<td>History of possible foreign body placement by child or impaired adult (with or without direct observation), mucopurulent discharge</td>
<td>May require otolaryngologist referral for rigid rhinoscopy for both diagnosis and treatment (possibly under sedation for child)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal tumors (benign or</td>
<td>Progressive unilateral congestion, bloody discharge, nasal or ear pain</td>
<td>Consider fiberoptic nasopharyngoscopy, CT scan, and/or referral to Otolaryngologist for examination, possible biopsy, and treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>malignant)</td>
<td></td>
<td>Surgery usually required, variable depending on diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebral</td>
<td>Unilateral clear mucopurulent discharge, use topical decongestant during exam for visualization and possible dislodgment</td>
<td>Test nasal discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otolaryngologist to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinal fluid leak</td>
<td>discharge, intermittent, increased with dependent head position, recent surgery or trauma</td>
<td>unilateral – may or may not be noted on exam</td>
<td>for beta-2 transferrin and if positive refer to Otolaryngologist</td>
<td>evaluate if there is need for surgical leak closure</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Primary ciliary dyskinesia syndrome</td>
<td>Recurrent rhinosinusitis, otitis, sinus surgeries, dx of rhinosinusitis with nasal polyps, atypical asthma, bronchiectasis</td>
<td>Findings compatible with chronic rhinosinusitis w/without nasal polyps</td>
<td>Nasal NO; nasal brush biopsy and electron microscopic exam are definitive tests; consider genetic testing; consider chest x-ray</td>
<td>No effective medical treatment other than infection intervention with antibiotics, surgery frequently required for chronic rhinosinusitis or chronic otitis</td>
</tr>
</tbody>
</table>
Table 8: Onset of action of pharmacological agents for allergic rhinitis.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Study Design</th>
<th>Onset of Action</th>
<th>Maximal Effect</th>
<th>First Measure of Onset</th>
<th>References for Onset</th>
<th>References for Peak Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intranasal steroid/antihistamine</td>
<td>EEU*</td>
<td>5 minutes (azelastine/fluticasone propionate)</td>
<td>2 weeks or greater</td>
<td>5 min</td>
<td>497</td>
<td>334</td>
</tr>
<tr>
<td>Intranasal decongestant-oxymetazoline</td>
<td>Peak nasal airflow</td>
<td><10 minutes</td>
<td>? within an hour</td>
<td>10min</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>Intranasal antihistamine</td>
<td>EEU</td>
<td>15 min (azelastine)</td>
<td>1 day to 4 weeks</td>
<td>15 min</td>
<td>499, 500</td>
<td>332, 355</td>
</tr>
<tr>
<td></td>
<td>EEU</td>
<td>30 min (olopatadine)</td>
<td>1 day to 4 weeks</td>
<td>30 minutes</td>
<td>333, 500, 501</td>
<td>355</td>
</tr>
<tr>
<td>Intranasal anticholinergic</td>
<td>Methacholine challenge</td>
<td>15 minutes (ipratropium)</td>
<td>1 hour</td>
<td>15 min</td>
<td>502</td>
<td>502</td>
</tr>
<tr>
<td>Oral antihistamine</td>
<td>EEU</td>
<td>30-90 min (desloratadine)</td>
<td>30 minutes</td>
<td>503</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EEU</td>
<td>45 min (levocetirizine)</td>
<td>15 minutes</td>
<td>504</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EEU</td>
<td>60 min (cetirizine)</td>
<td>1-8 days</td>
<td>15 min</td>
<td>499, 505</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EEU</td>
<td>60-75 min (loratadine)</td>
<td>1-8 days</td>
<td>15 min</td>
<td>499, 506, 504</td>
<td>507</td>
</tr>
<tr>
<td>Oral antihistamine with decongestant</td>
<td>Single Dose Park Setting</td>
<td>30 min (loratadine/pse)</td>
<td>unknown</td>
<td>15 min</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>Intranasal corticosteroids</td>
<td>EEU</td>
<td>1-6 hours (ciclesonide)</td>
<td>2-4 weeks</td>
<td>1 hour</td>
<td>509, 510, 511</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>EEU</td>
<td>2.5 hours (mometasone)</td>
<td>4 weeks</td>
<td>30 minutes</td>
<td>501</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>EEU</td>
<td>3-8 hours (budesonide)</td>
<td>2-4 weeks</td>
<td>1 hour</td>
<td>474, 513, 514, 515</td>
<td></td>
</tr>
<tr>
<td>2-week seasonal study</td>
<td></td>
<td>8 hours (fluticasone furoate)</td>
<td>2 weeks</td>
<td>30 min</td>
<td>516</td>
<td>511, 512, 515</td>
</tr>
<tr>
<td>Not EEU,</td>
<td></td>
<td>2-12 hours</td>
<td>2-4 weeks</td>
<td>2,4,12</td>
<td>517</td>
<td>514</td>
</tr>
<tr>
<td>Agent</td>
<td>Study Design</td>
<td>Onset of Action</td>
<td>Maximal Effect</td>
<td>First Measure of Onset</td>
<td>References for Onset</td>
<td>References for Peak Action</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Leukotriene Receptor Antagonist</td>
<td>EEU</td>
<td>within 5 hours (montelukast)</td>
<td>By week 2</td>
<td>5 hours</td>
<td>518, 519</td>
<td>520</td>
</tr>
<tr>
<td>Intranasal mast cell stabilizer</td>
<td>2 Week Seasonal Study</td>
<td>2 weeks (cromolyn)</td>
<td>At least 2 weeks</td>
<td>1 week</td>
<td></td>
<td>521</td>
</tr>
<tr>
<td>Intranasal mast cell stabilizer before allergen exposure</td>
<td>EEU, nasal allergen challenge</td>
<td>Application 1-7 minutes before allergen exposure</td>
<td>NA</td>
<td>≥ 10 min</td>
<td>444</td>
<td>NA</td>
</tr>
</tbody>
</table>

* EEU Environmental Exposure Unit
PSE: pseudoephedrine
Legends for figures

Figure 1. Rhinitis Control Assessment Test. 266, 269

Note to editor: Figure 1 submitted as separate JPEG, request JACI for use. 266, 269

[Note to editor: Separate PDF files for figure 2,3,4,5 (algorithms) are submitted. Footnotes for each respective figure are also submitted as separate PDF files, making a total of 8 files for the figures 2-5].

Figure 2: Algorithm Intermittent Allergic Rhinitis

Figure 3: Algorithm Persistent Allergic Rhinitis

Figure 4: Algorithm Intermittent Nonallergic Rhinitis

Figure 5: Algorithm Persistent Nonallergic Rhinitis
LEGEND FOR ABBREVIATIONS

INAC Intranasal anticholinergic
INAH Intranasal antihistamine
IN cromolyn Intranasal cromolyn
INCS Intranasal corticosteroid
IN(AH & CS) Intranasal antihistamine and corticosteroid administered by a single device
INAH+INCS These two preparations administered by separate devices
IND Intranasal decongestant
LTRA Leukotriene receptor antagonist
OAH 2G Oral antihistamine, 2nd generation
OCS Oral corticosteroid
PSE Pseudoephedrine
VAS Visual analogue scale

* While most of the meds listed in the algorithm are approved for use in children < age 12, comparative trials have, for the most part, been limited to those greater to or equal to 12 yrs of age. The principles of treatment of children are the same as for adults, but special care must be given to dosage adjustment, adverse effects, and long-term safety.

** Severity of rhinitis, based upon symptoms and degree of overall control can be assessed by the patient using a visual analogue scale (VAS) of 1-10/10, with 10 being the most severe. Alternatively, the patient and provider can define "mild" as normal daily activities, sport, leisure, work, school, and sleep and no troublesome symptoms. "Moderate-severe" would indicate that one or more of these items are abnormal or impaired.

*** Meds in JTFPP expert opinion suggested order, based upon major considerations noted.

@ See Onset of Action Table for more details

FOOTNOTES FOR INTERMITTENT ALLERGIC RHINITIS

1. Order considers onset of action as well as relative efficacy. INCS monotherapy may be preferred when avoidance of adverse taste from INAH is desired. INCS may also be preferred over INAH monotherapy when dosed over several days as INCS may become more effective with longer use.
2. PSE, if tolerated without significant adverse effects, e.g., insomnia, irritability, aggravation of hypertension and cardiac arrhythmias.

3. IND, caution advised when used > 5 days due to risk for rhinitis medicamentosa (rebound congestion), although some evidence that concomitant INCS use can minimize risk of rebound. Consider INCS + IND if IND is to be used > 5 days.

4. IN cromolyn is recommended for qid dosing for persistent symptoms, has a slow onset of action of 1-2 weeks, has limited efficacy, but is very safe and may be preferred by some pts. However, may be used just prior to episodic allergen exposure to blunt acute allergic response, with protective effect within 15 min.

5. No studies compare INCS/INAH administered in a single device as 1 spray each nostril twice daily versus individual medications administered consecutively, each dosed as 1 spray each nostril twice daily. Preference for using a single device is based primarily on convenience. Using the two individual medications would be preferred primarily due to affordability.

6. There are no studies for onset using two devices, therefore data from INAH listed; however, may be similar to IN(AH & CS).

7. OAH 2G + INCS have not been shown to have any additive benefit over using just the INCS.

8. Because serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in patients taking montelukast, montelukast should generally be reserved for patients who have an inadequate response or intolerance to alternative therapies.

9. For OAH 2G + LTRA, there is lack of adequate evidence of added efficacy to make a specific recommendation for or against this combination vs. monotherapy. However, with the serious neuropsychiatric events reported with montelukast, this combination should rarely be used.
FIELD NOTES Legend for abbreviations for Persistent AR Algorithm

LEGEND FOR ABBREVIATIONS
INAC Intranasal anticholinergic
INAH Intranasal antihistamine
IN Intranasal cromolyn
INCS Intranasal corticosteroid
IN(AH & CS) Intranasal antihistamine and corticosteroid administered by a single device
INAH+INCS These two preparations administered by separate devices
IND Intranasal decongestant
LTRA Leukotriene receptor antagonist
OAH 2G Oral antihistamine, 2nd generation
OCS Oral corticosteroid
PSE Pseudoephedrine
VAS Visual analogue scale

* While most of the meds listed in the algorithm are approved for use in children < age 12, comparative trials have, for the most part, been limited to those 12 yrs of age. The principles of treatment of children are the same as for adults, but special care must be given to dosage adjustment, adverse effects, and long-term safety.

** Severity of rhinitis, based upon symptoms and degree of overall control can be assessed by the patient using a visual analogue scale (VAS) of 1-10/10, with 10 being the most severe. Alternatively, the patient and provider can define "mild" as normal daily activities, sport, leisure, work, school, and sleep and no troublesome symptoms. "Moderate-severe" would indicate that one or more of these items are abnormal or impaired.

*** Meds in JTFPP expert opinion suggested order, based upon major considerations noted.
@ See Onset of Action Table for more details
FOOTNOTES FOR PERSISTENT ALLERGIC RHINITIS

1. PSE, if tolerated without significant adverse effects e.g. insomnia, irritability, aggravation of hypertension and cardiac arrhythmias.

2. Unlikely to adequately control symptoms.

3. IN cromolyn is recommended for qid dosing for persistent symptoms, has a slow onset of action of 1-2 weeks, has limited efficacy, but is very safe and may be preferred by some pts. However, may be used just prior to episodic allergen exposure to blunt acute allergic response, with protective effect within 15 min.

4. Because serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in patients taking montelukast, montelukast should generally be reserved for patients who have an inadequate response or intolerance to alternative therapies.

5. IND, caution advised when used > 5 days due to risk for rhinitis medicamentosa (rebound congestion), although some evidence that concomitant INCS use can minimize risk of rebound. Consider INCS + IND if IND is to be used > 5 days

6. No studies compare INCS/INAH administered in a single device as 1 spray each nostril twice daily versus individual medications administered consecutively, each dosed as 1 spray each nostril twice daily. Preference for using a single device is based primarily on convenience. Using the two individual medications would be preferred primarily due to affordability.

7. There are no studies for onset using two devices, therefore data from INAH listed; however, may be similar to IN(AH & CS).

8. Order considers onset of action as well as relative efficacy. INCS monotherapy may be preferred when avoidance of adverse taste from INAH is desired.

9. OAH 2G + INCS have not been shown to have any additive benefit over using just the INCS.

10. For OAH 2G + LTRA, there is lack of adequate evidence of added efficacy to make a specific recommendation for or against this combination vs. monotherapy. However, with the serious neuropsychiatric events reported with montelukast, this combination should rarely be used.
LEGEND FOR ABBREVIATIONS

INAC Intranasal anticholinergic
INAH Intranasal antihistamine
IN Cromolyn Intranasal cromolyn
INCS Intranasal corticosteroid
IN(AH & CS) Intranasal antihistamine and corticosteroid administered by a single device
INAH+INCS These two preparations administered by separate devices
IND Intranasal decongestant
LTRA Leukotriene receptor antagonist
OAH 2G Oral antihistamine, 2nd generation
OCS Oral corticosteroid
PSE Pseudoephedrine
VAS Visual analogue scale

* Recommendations for PNAR (perennial non-allergic rhinitis), VMR (vasomotor rhinitis)/idiopathic rhinitis do not necessarily apply to NARES, gustatory, senile, atrophic rhinitis. Onset of action studies have not been conducted for NAR for most medications. While most of the meds listed in the algorithm are approved for use in children < age 12, comparative trials have, for the most part, been limited to those greater to or equal to 12 yrs of age. The principles of treatment of children are the same as for adults, but special care must be given to dosage adjustment, adverse effects, and long-term safety.

** Severity of rhinitis, based upon symptoms and degree of overall control can be assessed by the patient using a visual analogue scale (VAS) of 1-10/10, with 10 being the most severe. Alternatively, the patient and provider can define "mild" as normal daily activities, sport, leisure, work, school, and sleep and no troublesome symptoms. "Moderate-severe" would indicate that one or more of these items are abnormal or impaired.

*** Meds in JTFPP expert opinion suggested order, based upon major considerations noted.
FOOTNOTES FOR

1. Order considers relative efficacy, but INCS monotherapy may be preferred when monotherapy and/or avoidance of adverse taste from INAH are desired. INCS may be preferred over INAH monotherapy when dosed over several days as INCS may become more effective with longer use.

2. PSE, if tolerated without significant adverse effects e.g. insomnia, irritability, aggravation of hypertension and cardiac arrhythmias.

3. Unlikely to adequately control symptoms.

4. IND, caution advised when used > 5 days due to risk for rhinitis medicamentosa (rebound congestion), although some evidence that concomitant INCS use can minimize risk of rebound. Consider INCS + IND if IND is to be used > 5 days

5. No studies compare INCS/INAH administered in a single device as 1 spray each nostril twice daily versus individual medications administered consecutively, each dosed as 1 spray each nostril twice daily. Preference for using a single device is based primarily on convenience. Using the two individual medications would be preferred primarily due to affordability.
FIGURE 5 [Persistent Non-Allergic Rhinitis Algorithm] FOOTNOTES, Legend for abbreviations

LEGEND FOR ABBREVIATIONS

INAC Intranasal anticholinergic
INAH Intranasal antihistamine
IN cromolyn Intranasal cromolyn
INCS Intranasal corticosteroid
IN(AH & CS) Intranasal antihistamine and corticosteroid administered by a single device
INAH+INCS These two preparations administered by separate devices
IND Intranasal decongestant
LTRA Leukotriene receptor antagonist
OAH 2G Oral antihistamine, 2nd generation
OCS Oral corticosteroid
PSE Pseudoephedrine
VAS Visual analogue scale

* Recommendations for PNAR (perennial non-allergic rhinitis), VMR (vasomotor rhinitis)/idiopathic rhinitis do not necessarily apply to NARES, gustatory, senile, atrophic rhinitis. Onset of action studies have not been conducted for NAR for most medications. While most of the meds listed in the algorithm are approved for use in children < age 12, comparative trials have, for the most part, been limited to those greater to or equal to 12 yrs of age. The principles of treatment of children are the same as for adults, but special care must be given to dosage adjustment, adverse effects, and long-term safety.

** Severity of rhinitis, based upon symptoms and degree of overall control can be assessed by the patient using a visual analogue scale (VAS) of 1-10/10, with 10 being the most severe. Alternatively, the patient and provider can define "mild" as normal daily activities, sport, leisure, work, school, and sleep and no troublesome symptoms. "Moderate-severe" would indicate that one or more of these items are abnormal or impaired.

*** Meds in JTFPP expert opinion suggested order, based upon major considerations noted.
FOOTNOTES FOR PERSISTENT NONALLERGIC RHINITIS ALGORITHM

1. Order considers relative efficacy, but INCS monotherapy may be preferred when avoidance of adverse taste from INAH are desired. INCS may be preferred over INAH monotherapy when dosed over several days as INCS may become more effective with longer use.

2. IND, caution advised when used > 5 days due to risk for rhinitis medicamentosa (rebound congestion), although some evidence that concomitant INCS use can minimize risk of rebound. Consider INCS + IND if IND is to be used > 5 days.

3. PSE, if tolerated without significant adverse effects, e.g., insomnia, irritability, aggravation of hypertension and cardiac arrhythmias.

4. No studies compare INCS/INAH administered in a single device as 1 spray each nostril twice daily versus individual medications administered consecutively, each dosed as 1 spray each nostril twice daily. Preference for using a single device is based primarily on convenience. Using the two individual medications would be preferred primarily due to affordability.

5. No evidence of benefit for the treatment of NAR.
1. **During the past week**, how often did you have nasal congestion?

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Extremely often</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

2. **During the past week**, how often did you sneeze?

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Extremely often</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

3. **During the past week**, how often did you have watery eyes?

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Extremely often</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

4. **During the past week**, to what extent did your nasal or other allergy symptoms interfere with your sleep?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>A little</th>
<th>Somewhat</th>
<th>A lot</th>
<th>All the time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

5. **During the past week**, how often did you avoid any activities (for example, visiting a house with a dog or cat, gardening) because of your nasal or other allergy symptoms?

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Extremely often</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

6. **During the past week**, how well were your nasal or other allergy symptoms controlled?

<table>
<thead>
<tr>
<th>Completely</th>
<th>Very</th>
<th>Somewhat</th>
<th>A little</th>
<th>Not at all</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Persistent Allergic Rhinitis Pharmacologic Treatment - Age 12 and older

Mild symptoms (VAS <5/10)

*Patient preference degree of efficacy major considerations in shared decision making***

- **Initial treatment - expert opinion - #1, 2, 3, 4, 5 order (± PRN nasal saline)**
 - When symptoms are fully controlled, maintain or step down/discontinue therapy if triggering agent is no longer present.

 - #1: INCS 1-2 hr onset
 - #2a: OAH 2G 60 min onset
 - #2b: INAH ≤ 15-30 min onset
 - #3: OAH 2G + PSE for major congestion (if tolerated) 30-60 min. onset OR OAH 2G; 30-45 min. onset PSE
 - #4: Not Recommended First Line
 - LTRA 1-2 weeks onset

 Initially, if severe mucosal edema impairs delivery of IN agents or the patient requests rapid relief, consider adding IND or oral PSE for up to 5 days. Instruct patient to provide feedback regarding adequacy of initial therapy in 5 to 7 days.

 - **Symptoms controlled?**
 - YES → Continue Tx PRN or step-down and stop Tx when trigger is not present
 - NO → Use alternative monotherapy (preferred)

 - **Anterior rhinorrhea**
 - INAC 15 min onset
 - **Nasal congestion**
 - IND (up to 5 days) <10 min onset OR PSE (if tolerated) 20-45 min onset

 - Reassess in 7-14 days

 - **Continue Tx or step-down and stop Tx when trigger is not present**

 - **Go to Persistent Moderate/severe Treatment algorithm**

Moderate/severe, Persistent Symptoms (VAS≥5/10)

*Patient preference degree of efficacy major considerations in shared decision making***

- **Initial treatment - expert opinion - #1a=1b, 2, 3 order (± PRN nasal saline)**
 - When symptoms are fully controlled, maintain or step down/discontinue therapy if triggering agent is no longer present.

 - #1a: IN (AH & CS) 2; 3, 5 min onset
 - #1b: INAH + INCS7,8,9 ≤ 15-30 min onset
 - #2: INCS 1-2 hr onset
 - #3: INAH ≤ 15-30 min onset
 - #4: Not Recommended for First Line
 - Recommend Against
 - LTRA 1-2 weeks onset
 - OAH 2G + INCS
 - OAH 2G + PSE (if tol)
 - OAH 2G + LTRA

 Initially, if severe mucosal edema impairs delivery of IN agents or the patient requests rapid relief, consider adding IND or oral PSE for up to 5 days. Instruct patient to provide feedback regarding adequacy of initial therapy in 5 to 7 days.

 - **Symptoms controlled?**
 - YES → Continue Tx PRN or step-down and then stop Tx when trigger is no longer present
 - NO → Recommended next step treatments: Specific choice depends on initial therapy

 - **No recommendation can be made for or against**
 - **Recommend against**
 - **Use alternative monotherapy**
 - OR **Use option 1a or 1b above**
 - **Consider adding symptom specific agent** (INAC, IND, or PSE)
 - OR **OAH 2G + INCS**
 - OR **OAH 2G + PSE (if tol)**
 - OR **OAH 2G + LTRA**

 - Reassess in 7-14 days

 - If very severe initial presentation, and/or severe mucosal edema that may impair delivery of intranasal agents that has failed decongestants, add OCS burst

 - **Symptoms controlled?**
 - YES →
 - NO →

Note: (e.g., INCA = Intranasal Corticosteroid)
* While most of the meds listed in the algorithm are approved for use in children < age 12, comparative trials have, for the most part, been limited to those 12 yrs of age. The principles of treatment of children are the same as for adults, but special care must be given to dosage adjustment, adverse effects, and long-term safety.

** Severity of rhinitis, based upon symptoms and degree of overall control can be assessed by the patient using a visual analogue scale (VAS) of 1-10, with 10 being the most severe. Alternatively, the patient and provider can define "mild" as normal daily activities, sport, leisure, work, school, and sleep and no troublesome symptoms. "Moderate-severe" would indicate that one or more of these items are abnormal or impaired.

*** Meds in JTFPP expert opinion suggested order, based upon major considerations noted.

® See Onset of Action Table for more details

FOOTNOTES FOR PERSISTENT ALLERGIC RHINITIS

1. PSE, if tolerated without significant adverse effects e.g. insomnia, irritability, aggravation of hypertension and cardiac arrhythmias
2. Unlikely to adequately control symptoms
3. IN cromolyn is recommended for qid dosing for persistent symptoms, has a slow onset of action of 1-2 weeks, has limited efficacy, but is very safe and may be preferred by some pts. However, may be used just prior to episodic allergen exposure to blunt acute allergic response, with protective effect within 15 min.
4. Because serious neuropsychiatric events that may include suicidal thoughts or actions have been reported in patients taking montelukast, montelukast should generally be reserved for patients who have an inadequate response or intolerance to alternative therapies.
5. IND, caution advised when used > 5 days due to risk for rhinitis medicamentosa (rebound congestion), although some evidence that concomitant INCS use can minimize risk of rebound.
 - Consider INCS + IND if IND is to be used > 5 days
7. No studies compare INCS/INAH administered in a single device as 1 spray each nostril twice daily versus individual medications administered consecutively, each dosed as 1 spray each nostril twice daily. Preference for using a single device is based primarily on convenience. Using the two individual medications would be preferred primarily due to affordability.
8. There are no studies for onset using two devices, therefore data from INAH listed; however, may be similar to IN(AH & CS)
9. Order considers onset of action as well as relative efficacy. INCS monotherapy may be preferred when avoidance of adverse taste from INAH is desired.
10. OAH 2G + INCS have not been shown to have any additive benefit over using just the INCS
11. For OAH 2G + LTRA, there is lack of adequate evidence of added efficacy to make a specific recommendation for or against this combination vs. monotherapy. However, with the serious neuropsychiatric events reported with montelukast, this combination should rarely be used.